Project description:Intercropping is a sustainable agricultural practice widely used around the world for enhancing resource use efficiency. However, short crops often grow in shade condition underneath the canopy of tall crops. Soybean is one of the most important oil crops and usually is planted in intercropping patterns. However, little is known about the acclimation responses of soybean leaves to shade in intercropping condition at the transcriptome level.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Elevated atmospheric CO2 can influence the structure and function of rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizosphere of soybean plants exposed to elevated atmospheric CO2. The results of microarray analyses indicated that atmospheric elevated CO2 concentration indirectly influences on expression of large number of Bradyrhizobium genes through soybean roots. In addition, genes involved in C1 metabolism, denitrification and FixK2-associated genes, including those involved in nitrogen fixation, microanaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2 in the rhizosphere, relative to plants and bacteria grown under ambient CO2 growth conditions. The expression profile of genes involved in lipochitinoligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, results of these studies indicate that growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizosphere, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency.
Project description:Elevated atmospheric CO2 can influence the structure and function of rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizosphere of soybean plants exposed to elevated atmospheric CO2. Transciptomic expression profiles indicated that genes involved in carbon/nitrogen metabolism, and FixK2-associated genes, including those involved in nitrogen fixation, microanaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2, relative to plants and bacteria grown under ambient CO2 growth conditions. The expression profile of genes involved in lipochitinoligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, results of these studies indicate that growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizosphere, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency. Bradyrhizobium japonicum strains were grown in the soybean rhizosphere under two different CO2 concentrations. Transcriptional profiling of B. japonicum was compared between cells grown under elevated CO2 and ambient conditions. Four biological replicates of each treatment were prepared, and four microarray slides were used for each strain.
Project description:Increased root H+ secretion is known as a strategy of plant adaption to low phosphorus (P) stress by enhancing mobilization of sparingly soluble P-sources. However, it remains fragmentarywhether enhanced H+ exudation could reconstruct the plant rhizosphere microbial community under low P stress. The present study found that P deficiency led to enhanced H+ exudation from soybean (Glycine max) roots. Three out of all eleven soybean H+-pyrophosphatases (GmVP) geneswere up-regulated by Pi starvation in soybean roots. Among them, GmVP2 showed the highest expression level under low P conditions. Transient expression of a GmVP2-green fluorescent protein chimera in tobacco (Nicotiana tabacum) leaves, and functional characterization of GmVP2 in transgenic soybean hairy roots demonstrated that GmVP2 encoded a plasma membrane transporter that mediated H+ exudation. Meanwhile, GmVP2-overexpression in Arabidopsis thaliana resulted in enhanced root H+ exudation, promoted plant growth, and improved sparingly soluble Ca-P utilization. Overexpression of GmVP2 also changed the rhizospheric microbial community structures, as reflected by a preferential accumulation of acidobacteria in the rhizosphere soils. These results suggested that GmVP2 mediated Pi-starvation responsive H+ exudation,which is not only involved in plant growth and mobilization of sparingly soluble P-sources, but also affects microbial community structures in soils.
2023-06-01 | GSE205273 | GEO
Project description:effect of conservation tillage practice on soil bacterial community
Project description:Plant growth promoting bacteria (PGPB) are a growing subset of agricultural adjuncts which can be used to increase crop yield and plant productivity. Although, substantial research has been conducted on the metabolites and active molecules secreted by PGPBs; relatively little is known about their effects on the global transcriptome of the host plant. The present study was carried out to investigate changes in the gene expression landscape of early vegetative Brassica napus following treatment with Pseudomonas chlororaphis PA23. This PGPB was isolated from the soybean rhizosphere and has been extensively studied as a biocontrol agent. However, little is known about its effects on plant growth and development. Using a combination of RNA-sequencing and physiological analyses, we identified increased abundance of mRNA transcripts associated with photosynthesis and phytohormone response. Phenotypically we observed increased photosynthetic rates and larger root and shoot systems in B. napus following P. chlororaphis PA23 treatment. Lastly, we identified auxin production by P. chlororaphis PA23 which likely contributes to changes in gene expression and observed phenotypic differences in root and shoot structures. Together, the results of our study suggest that PA23 is a potent plant growth promoting agent with the potential for field applications as an agricultural adjunct.
Project description:Two-stage channels are a relatively new best management practice design used to treat nonpoint pollution. Soils collected from these channels in agricultural ditches were analyzed to elucidate the microbial functionality of the system.
Project description:Alkali stress is one of the most severe abiotic stresses affecting agricultural production worldwide. To understand the phosphorylation events in soybean in response to alkali stress, we performed the TMT labeling-based quantitative phosphoproteomic analyses on soybean leaf and root tissues under 50 mM NaHCO3 treatment.