Project description:Energy densification and enrichment of monounsaturated fatty acids increases oat’s nutritional value among small grain cereals. However, optimization of oat oil traits is challenging through conventional breeding. Using the biolistic method for oat’s oil improvement, here we showed that metabolic engineering is a feasible strategy in improving the oil traits of oat. In this study, two constructs containing three genes involved in lipid biosynthesis pathway (AtWRI1, AtDGAT, and SiOLEOSIN) were transformed into oat cultivar ‘Park’ to enhance the oil composition and content in oat grain and leaves. We performed RNA-sequencing in mature seeds and boot leaves of trasngenic lines. Transgene expression contributed to a global transcriptional reprogramming in oat seeds and leaves. Endogenous DGAT, WRI1, and OLEOSIN genes were up regulated while the genes involved in fatty acid biosynthesis expressed in opposite way between oat seeds and leaves. Transcriptomic studies revealed differential gene expression mainly enriched in lipid metabolism.
Project description:ngs2016_10_dormancy - RNA-Seq on mpk8 and tcp14 mutants on dry and imbibited seeds-Comparison of the expression of genes in wild seeds and in mpk8 and tcp14 mutants on dry seeds and at a precise imbibition time (24h, 25°C) and in the dark.-Dry harversted seed: WT, mpk8, tcp14, 24h of imbibition in dark at 25°C: WT, mpk8, tcp14.
Project description:To establish the basis for understanding molecular mechanism of seed germination response to temperature, we analyzed transcriptomes in freshly harvested dormant and dry stored after-ripened seeds. The after-ripened seeds started to show visible germination from 36h after the start of imbibition, and almost all the seeds germinated after 3 days. The freshly harvested seeds stayed dormant by imbibition at 26°C, and germination of the after-ripened seeds was almost completely inhibited at 34°C. Total RNA was prepared from 0 (dry), 6 and 24h imbibed seeds to find regulatory genes of seed dormancy and germination.
Project description:ngs2018_10_ethylene-effect of ethylene rna-seq-what are the effects of ethylene on mRNA metabolism during germination-seeds were imbibed at 25°c in darkness ± C2H4 and RNA was extracted after 6, 16 and 24 h of imbibition
Project description:Purpose: This RNA-Seq study aims on elucidate the major trends in the transcriptional profile of soybean embryonic axes during germination. Methods: Soybean seeds were germinated in soaked cotton at 28ºC. In addition to dry seeds, seeds were harvested at 3, 6, 12, 24 hours after imbibition. Then the embryonic axes were separated from the cotyledons for RNA extraction. For each biological sample, 20 seeds were used. Results: Identification of genes and pathways involved in metabolism, hormone signaling and transcriptional regulation.
Project description:au13-12_polysome - transcriptome and translatome of arabidopsis wt seeds according to dormancy - Identification of transcripts that are differentially abundant (transcriptome) and transcripts that are addressed to translation (translatome) in imbibed Arabidopsis seeds in relation with dormancy. During imbibition of seeds (16h and 24h in darkness at 25°C, dormant and non-dormant seeds), transcriptome analysis is done on total RNA and translatome analysis on polysomal RNA. - At harvest seeds are dormant. They stay dormant if they are stored at -20°C (D) and become non-dormant (ND) if they are stored 3 weeks at +20°C. Arabidopsis dormant seeds do not germinate at 25°C in darkness while non-dormant seeds do. Total RNA and polysomal RNA (polysomal fractions purified on sucrose gradients) were extracted from imbibed seeds for 16h or 24h at 25°C in darkness (3 biological replicates). Transcriptome and translatome are compared for Dormant vs Non-Dormant for 16h and 24 imbibition. In silico comparison will allow to compare transcriptome and translatome for each point and type of seeds and to compare the time points (16 vs 24h) for each type of sample.
Project description:Purpose: A time-course transcriptome study to identify probable GA-responsive genes in soybean embryonic axes during seed germination. Methods: Seeds were germinated in the presence or absence of 200 µM PBZ. Seeds were germinated in 28°C temperature and 12/12h photoperiod (dark/light) and harvested at 12, 24 and 36 hours after imbibition (HAI). Three biological replicates were performed. Results: Identification of GA-responsive genes during germination in Glycine max.
Project description:au14-10_wd40 - effet of light on translatome of arabidopsis seeds during germination - Does light regulates germination via polysome association ? - At harvest seeds are dormant.They stay dormant if stored at -20°C.A.Th dormant seeds dont germinate at 25°C in darkness.Total RNA and polysomal RNA (polysomal fractions purified on sucrose gradients)were extracted from imbibed seeds for 20h at 22°C in darkness and light(3 biological replicates). Transcriptome and translatome are compared for light vs dark for 20h of imbibition. In silico comparison will allow to compare transcriptome and translatome for each type of sample.
Project description:Wheat seed germination and seminal root growth can be inhibited by treatment with exogenous ABA We used Affymetrix GeneChip Wheat Genome Array to detail transcriptional programs affected by ABA during imbibition After-ripened seeds imbibed in ABA for 24 h were used for RNA extraction and hybridization on Affymetrix GeneChip. After-ripened seeds were generated by storing dormant seeds at room temperature for 10 months.