Project description:The biological functions of circadian clock on growth and development have been well elucidated in model plants, while its regulatory roles in crop species, especially the roles on yield-related traits are poorly understood. Here, we characterize the core clock gene CCA1 homoeologs in wheat and studied their biological functions in seedling growth and spike development. TaCCA1 homoeologs exhibit typical diurnal expression patterns which are positively regulated by rhythmic histone modifications (H3K4me3, H3K9ac and H3k36me3). TaCCA1s are preferentially located in the nucleus and tend to form both homo- and heterodimers. TaCCA1 overexpression (TaCCA1-OE) transgenic wheat plants show disrupted circadian rhythmicity coupling with reduced chlorophyll and starch content, as well as biomass at seedling stage, also decreased spike length, grain number per spike and grain size at the ripening stage. Further studies using DNA affinity purification followed by deep sequencing (DAP-seq) indicates that TaCCA1 preferentially binds to sequences similar to “evening elements” (EE) motif in the wheat genome, particularly genes associated with photosynthesis, carbon utilization and auxin homeostasis, and decreased transcriptional levels of these target genes are observed in TaCCA1-OE transgenic wheat plants. Collectively, our study provides novel insights into a circadian-mediated mechanism of gene regulation to coordinate photo synthetic and metabolic activities in wheat, which is important for optimal plant growth and crop yield formation.
Project description:Transcript changes in response to low temperature Total RNA for RNA-seq analysis were extracted from wheat leaf tissues with three biological replicates for each growth condition.
Project description:Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs) were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq). Note: All samples in SRA were assigned the same sample accession (SRS417803). This is incorrect as there are different samples, hence “Source Name” was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:To better understand the regulatory mechanisms of water stress response in wheat, the transcript profiles in roots of two wheat genotypes, namely, drought tolerant 'Luohan No.2' (LH) and drought susceptible 'Chinese Spring' (CS) under water-stress were comparatively analyzed by using the Affymetrix wheat GeneChip®. A total of 3831 transcripts displayed 2-fold or more expression changes, 1593 transcripts were induced compared with 2238 transcripts were repressed, in LH under water-stress; Relatively fewer transcripts were drought responsive in CS, 1404 transcripts were induced and 1493 were repressed. Comparatively, 569 transcripts were commonly induced and 424 transcripts commonly repressed in LH and CS under water-stress. 689 transcripts (757 probe sets) identified from LH and 537 transcripts (575 probe sets) from CS were annotated and classified into 10 functional categories, and 74 transcripts derived from 80 probe sets displayed the change ratios no less than 16 in LH or CS. Several kinds of candidate genes were differentially expressed between the LH and CS, which could be responsible for the difference in drought tolerance of the two genotypes.