Project description:Transcriptome analysis in cotton under drought stress. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out in leaf tissue. Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Leaf samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome.
Project description:Transcriptome analysis in cotton under drought stress. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out in leaf tissue. Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Leaf samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome. Total RNA was isolated from leaf tissue. Samples were collected from both drought induced and control plants. Biotin labeled cRNA was hybridized on Affymertix cotton Genechip Genome array following the Affymetrix protocols. Three biological replicates were maintained.
Project description:Transcriptome analysis in cotton during fibre development stages. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out at fibre development stages (0, 5, 10 and 20 dpa/Days post anthesis). Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome.
Project description:Transcriptome analysis in cotton during fibre development stages. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out at fibre development stages (0, 5, 10 and 20 dpa/Days post anthesis). Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome. Total RNA was isolated from 0 dpa, 5 dpa, fibre bearing ovules of 10 dpa, and fibre bearing ovules of 20 dpa. Samples were collected from both drought induced and control plants. Biotin labeled cRNA was hybridized on Affymertix cotton Genechip Genome array following the Affymetrix protocols. Three biological replicates were maintained.
Project description:Structural and functional approaches were used to study cotton (Gossypium) genes implicated in water-deficit stress. A genetic map representing the hypothetical ancestral diploid genome (Consensus Map) was used to map 1,907 of 15,784 tentative consensus sequences (TCs). These TCs represent 25,119 cotton ESTs derived from various tissues under irrigated and water-limited condition. The correspondence of mapped TCs and 42 stress-related quantitative trait loci (QTLs) revealed that 391 of the initial 1907 TCs co-localized within a QTL interval. About 31% of these TCs were annotated as genes involved in plant responses to abiotic stress. By comparison, only 18% of the total annotated TCs mapped on the Consensus map were classified as abiotic stress genes. The enrichment of stress-related TCs that map to stress-related QTLs could not be explained by chance (P = 1.5 x 10-7). Gene expression profiling experiments were carried out using a microarray composed of 12,006 oligonucleotides. Transcriptional responses to imposed water-deficit stress in root and leaf tissue of 8-week old cotton plants revealed 1401 transcripts identified as drought responsive. A total of 158 (84 drought-induced and 74 drought-repressed) genes were mapped, of which 22 (8 induced and 14 repressed) genes co-localized with a QTL. A total of 539 unique genes were identified in the drought-stressed libraries. However, only 91 of these genes are contained on the array. Of these genes, 12 showed significant changes in transcript abundance between stressed and irrigated leaf and root. Forty-five candidate genes implicated in drought-stress response at some level of characterization were identified. Keywords: stress response
Project description:Drought is one of the primary limiting factors affecting the growth and yield of cotton. Studying the genotypic drought response of plant towards stress stimuli necessitates the development of a standardized, comprehensive and cohesive system that specifically captures information regarding the focal purpose. In-house development of drought specific microarray using drought specific oligonucleotide probes was carried out and the leaf and root tissue of the two-important species Gossypium arboreum and Gossypium hirsutum were tested for genetic traits responses under 10 days’ drought stress. Further the response of these tissue under control and drought stress were studied via inhouse developed oligonucleotide chip.
Project description:Drought-responsive genes were identified in leaf tissues of the cotton Acala 15-1799, a cotton genotype derived in the Southwest USA. Most of the identified genes such as the heat shock proteins have been described as responsive to drought and heat in other plant species. Microarray analysis was used to identify drought-responsive genes that might confer this cotton genotype with an improved tolerance to drought stress. Leaves from cotton plants watered or exposed to drought stress were used for RNA extraction and generarion of cRNA probes for hybridization of Affymetrix microarrays. Microarray technology was used to identify drought-responsive genes in cotton to assist in molecular breeding program. The supplementary file 'GSE18253_differentially_expressed.txt' lists the differentially expressed genes.
Project description:Cotton productivity is affected by water deficit and little is known about the molecular basis of drought tolerance in cotton. In this study, microarray analysis was carried out to identify drought responsive genes in functional leaves of the field-grown drought stressed cotton (Gossypium hirsutum L.) Acala 1517-99. The water stress was imposed after withholding irrigation for 9 days in the early squaring stage, which resulted in 10-15% reduction in plant growth compared to the well watered plants. A total of 110 drought responsive genes (0.5% of the total genes represented in the microarray) were identified, 79% (88 genes) of which were down-regulated and 21% (22 genes) were up-regulated by water stress. The responsiveness of 19 selected drought responsive genes was validated by real time PCR. The drought inducible genes were grouped into six functional categories only including stress related (10 genes, 9 of which are heat shock proteins), metabolism (3) and one each for transcription factor, proline biosynthesis and cellular transport. The down-regulated genes were classified into 14 functional categories including metabolism (20 genes), cellular transport (12), stress related (12), and regulation of gene expression (9) and transcription factor (4), signal transduction (7) and 2 genes each for biosynthesis of secondary compounds, cell wall, fatty acids/lipids and chlorophyll, and protein degradation. Most of the genes have been reported in other plants as drought tolerant/responsive and only 21 drought responsive genes (19%) were functionally unknown. The genes identified provides the first glimpse into the molecular basis of drought response in cotton.
Project description:Cotton (Gossypium hirsutum L.) is one of the most important cash crops worldwide. In semi-arid/arid regions, drought stress causes growth limitation and decrease of yield. Of all the organs of a plant, fine root is the central part consisting of the root system to contribute to plant water and nutrient taken up. However, the research on the molecular mechanism underlying fine root response to soil drought has not been well understood in cotton. To better characterize the proteomic changes of cotton fine roots under drought stress, 70±5% and 40±5% soil relative water content were designed as control (CK) and drought stress (DS) groups, respectively. Tandem mass tags (TMT) technology was used to determine the proteome profiles in fine roots. The proteomic differences between CK and DS were pairwise compared at 0, 30, and 45 days after drought stress (DAD). A total of 11,628 proteins were identified, of which 10,344 proteins contained quantitative information. According to the morphological, physiological, and biochemical characteristics, 30 and 45 DAD were selected as critical stages for further analysis. Results showed that 118 differentially expressed proteins (DEPs) were up-regulated and 105 down-regulated in DS 30 versus CK 30; 662 DEPs were up-regulated, and 611 were down-regulated in DS 45 versus CK 45. The DEP functions were determined for their classified pathways, mainly associated with carbohydrate metabolism, energy metabolism, fatty acid metabolism, amino acid metabolism, and secondary metabolite biosynthesis. DEPs related to phytohormone and stress/defense response were also identified. To verify the accuracy of the TMT results, 20 DEPs were randomly selected for parallel reaction monitoring (PRM) verification. And results showed that the quantitative results of TMT are consistent with those of PRM, which proved that the TMT results of this study are reliable. In this article we describe changes in the protein profiles occurring in response to drought stress in cotton fine roots. Proteomic analyses of plant responses to stressors could lead to the introduction of cotton cultivars with high resistance to drought stress. Such plants would be valuable for high yielding under drought as well as other unfavorable environmental conditions.
Project description:Melatonin is a well-known agent that plays multiple roles in animals. Its possible function in plants is less clear. In the present study, we tested the effect of melatonin (N-acetyl-5-methoxytryptamine) on soybean growth and development. Both spraying of leaves and seed-coating with melatonin significantly promoted soybean growth as judged from leaf size and plant height. This enhancement was also observed in soybean production and their fatty acid content. Melatonin increased pod number, seed number and seed weight. However, the 100-seed weight was not influenced by melatonin application. Melatonin also improved soybean tolerance to salt and drought stresses. Transcriptome analysis revealed that melatonin up-regulated the expression of many genes and alleviated the inhibitory effects of salt stress on gene expressions. Further detailed analysis of the affected pathways documents that melatonin likely achieved its promotional roles in soybean through enhancement of genes involved in cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis and ascorbate metabolism. Our results demonstrate that melatonin has significant potential for improving of soybean growth and seed production. Further study should uncover more about the molecular mechanisms of melatoninM-bM-^@M-^Ys function in soybeans and other crops. Four different treatments were chosen, water, salt, 100M-BM-5M melatonin and salt plus 100M-BM-5M melatonin. The comparison of salt/melatonin-treated sample versus water-treated sample reveals salt or melatonin induced transcriptome changes. The comparison of melatonin plus salt treated sample versus salt-treated sample reveals melatonin induced changes when salt exists.