Project description:The yeast calibration curve dataset was acquired to compare the accuracy of DIA tools with decreasing contents of target peptides. Four samples (Y1, Y2, Y3 and Y4) with decreasing contents (200, 100, 50 and 25 ng, respectively) of analytes (yeast tryptic peptides) and a high content of background peptides (800 ng human tryptic peptides constantly) were analyzed in triplicate using LC-DIA-MS/MS. The DIA data were processed by different DIA tools based on the spectral library generated from the DDA data. The accuracy of different DIA tools was compared.
Project description:Tadpoles of the anuran species Rana pirica can undergo predator-specific morphological responses. Exposure to a predation threat by larvae of the salamander Hynobius retardatus results in formation of a bulgy body (bulgy morph) with a higher tail. Whereas, dragon fly also induced higher tail tadpole. The tadpoles revert to a normal phenotype upon removal of the larval salamander or dragon fly threat. The objective of the present study was to use Affymetrix Xenopus Genechip to profile gene expression in the tail tissue by different predation threat. Tadpoles of Rana pirica treated with larvae salamander for 8days (S1, S2, S3) or dragon fly for 8days (Y1,Y2, Y3) were analyzed with triplicate. Removal experiments were also treated with predators for 4days and then removed predators from tadpoles (-S1,-S2, -S3) or (-Y1,-Y2,-Y3). Controls were cultured for 8days without predators (C2, C3). Tails from tadpoles after 8days of each treatment were dissected for RNA extraction and gene expression analysis using Affymetrix Xenopus Genechip arrays.
Project description:Higher temperature conditions during the final stages of rice seed development (seed filling and maturation) are known to cause damage to both rice yield and rice kernel quality. Japan, especially western and central parts, has seen record high temperatures in the last decade, and the rice kernel quality has decreased; specifically a reduction the first-grade of rice has been seen. In this study, we specifically looked at the harvested rice in a town of the central Kanto-plains (Japan) during the year 2010, which saw day-time temperatures go above the critical limits ranging from 34 to 38C at the final stages of seed development and maturity to investigate high-temperature effects in the actual field condition. Three sets of dry mature rice seeds (commercial) were obtained Japan Agriculture (JA Zen-Noh) branch in Ami-town of Ibaraki prefecture in September 2010, as grade 1 (labeled as Y1), grade 2 (labeled as Y2), and grade 3 (out-of-grade, labeled as Y3). The research objective was to examine in particular alterations in gene expressions genome-wide in grade 2 (Y2) and grade 3 (Y3) seeds over the grade 1 (Y1) following the high-temperature spike using a high-throughput omic-approach DNA microarray (Agilent 4 x 44K rice oligo DNA chip) in conjunction with MapMan bioinformatics analysis. Rice seed quality analysis revealed, as expected, low quality in Y3 > Y2 over Y1, in taste, amylose, protein and fatty acid degree, but not in water content. Transcriptome profiling data revealed 124 and 373 up-regulated and 106 and 129 down-regulated genes in Y2 and Y3, respectively. Bioinformatics analysis of differentially expressed genes revealed changes in function of genes related to metabolism, including starch metabolism (e.g., alpha amylase), defense/stress response, fatty acid biosynthesis and hormones. This research provides for the first time the seed transcriptome profile for the classified low grades (2 and out-of-grade) of rice under an actual stressed environmental condition of high temperature.
Project description:MicroRNA profile comparison of the corneal endothelium of young and old mice: implications for senescence of the corneal endothelium We collected the corneal endothelia from 30 mice aged 10-13 weeks and the corneal endothelia from 30 mice aged 2 years. The samples were pooled into six groups (y1, y2, y3 and s1, s2, s3). Each group comprised corneal endothelia from ten mice, and these six groups were used for a genome-wide microRNA microarray study.
Project description:Here we describe a genome-wide analysis of copy number variations (CNVs) in Chinese domestic cattle by using array comparative genomic hybridization (array CGH) and quantitative PCR (qPCR). We conducted array CGH analysis on 30 male cattle individuals, animals from consisting of 12 breeds of Bos taurus/Bos indicus, 1 Bos grunniens and and two ones of Bubalus bubalis breeds for with beef, and/or dairy or dual purpose. We identified over 470 candidate CNV regions (CNVRs) in Bos B. taurus/B. indicus; 118 candidate CNV regions (CNVRs) in B. grunniens, 139 CNVRs in B. bubalis. Furthermore, based on the Y haplotypes of B. taurus/ B. indicus, Wwe also identified 69, 337, and 251 candidate CNV regions (CNVRs) in the sub-groups of Y1, Y2 and Y3 haplotypes.
Project description:Whole-cell immobilization of selenate-respiring Sulfurospirillum barnesii in polyacrylamide gels was investigated to allow the treatment of selenate contaminated (790 microg Se x L(-1)) synthetic wastewater with a high molar excess of nitrate (1,500 times) and sulfate (200 times). Gel-immobilized S. barnesii cells were used to inoculate a mesophilic (30 degrees C) bioreactor fed with lactate as electron donor at an organic loading rate of 5 g chemical oxygen demand (COD) x L(-1) day(-1). Selenate was reduced efficiently (>97%) in the nitrate and sulfate fed bioreactor, and a minimal effluent concentration of 39 microg Se x L(-1) was obtained. Scanning electron microscopy with energy dispersive X-ray (SEM-EDX) analysis revealed spherical bioprecipitates of <or=2 microm diameter mostly on the gel surface, consisting of selenium with a minor contribution of sulfur. To validate the bioaugmentation success under microbial competition, gel cubes with immobilized S. barnesii cells were added to an Upflow Anaerobic Sludge Bed (UASB) reactor, resulting in earlier selenate (24 hydraulic retention times (HRTs)) and sulfate (44 HRTs) removal and higher nitrate/nitrite removal efficiencies compared to a non-bioaugmented control reactor. S. barnesii was efficiently immobilized inside the UASB bioreactors as the selenate-reducing activity was maintained during long-term operation (58 days), and molecular analysis showed that S. barnesii was present in both the sludge bed and the effluent. This demonstrates that gel immobilization of specialized bacterial strains can supersede wash-out and out-competition of newly introduced strains in continuous bioaugmented systems. Eventually, proliferation of a selenium-respiring specialist occurred in the non-bioaugmented control reactor, resulting in simultaneous nitrate and selenate removal during a later phase of operation.
Project description:Driven by economic interests, the abuse of antibiotics has become a significant concern for humans worldwide. As one of the most commonly used antibiotics, oxytetracycline (OTC) residue in animal-derived foods occurs occasionally, which has caused danger to humanity. However, there is still no simple and efficient solution to detect OTC residue. Here, an easily-operated colorimetric strategy for OTC detection was developed based on nickel ions (Ni2+) immobilized carboxymethylcellulose/polyacrylonitrile nanofibrous membranes (Ni@CMC/PAN NFMs). Owing to numerous O- and N-containing groups OTC has a strong tendency to complex with Ni2+ on the strips, inducing a color change from light green to yellow visible to the naked eye. The NFMs structural features, CMC functionalization process, and Ni2+ immobilization amount was carefully regulated to assure OTC detection whilst maintaining the inherent characteristics of NFMs. With the benefits of the large specific surface area (SSA) and small pore size of NFMs, the strips not only exhibited a rapid response (2 min), and low detection limit (5 nM) but also performed with good reversibility and selectivity concerning OTC detection over other antibiotics. The successful development of such enchanting nanofibrous materials may provide a new comprehension into the design and improvement of colorimetric strips.
Project description:Progress towards a more circular phosphorus economy necessitates development of innovative water treatment systems which can reversibly remove inorganic phosphate (Pi) to ultra-low levels (<100 μg L-1), and subsequently recover the Pi for reuse. In this study, a novel approach using the high-affinity E. coli phosphate binding protein (PBP) as a reusable Pi bio-adsorbent was investigated. PBP was expressed, extracted, purified and immobilized on NHS-activated Sepharose beads. The resultant PBP beads were saturated with Pi and exposed to varying pH (pH 4.7 to 12.5) and temperatures (25-45 °C) to induce Pi release. Increase in temperature from 25 to 45 °C and pH conditions between 4.7 and 8.5 released less than 20% of adsorbed Pi. However, 62% and 86% of the adsorbed Pi was released at pH 11.4 and 12.5, respectively. Kinetic experiments showed that Pi desorption occurred nearly instantaneously (<5 min), regardless of pH conditions, which is advantageous for Pi recovery. Additionally, no loss in Pi adsorption or desorption capacity was observed when the PBP beads were exposed to 10 repeated cycles of adsorption/desorption using neutral and high pH (≥12.5) washes, respectively. The highest average Pi adsorption using the PBP beads was 83 ± 5%, with 89 ± 4.1% average desorption using pH 12.5 washes over 10 wash cycles at room temperature. Thermal shift assay of the PBP showed that the protein was structurally stable after 10 cycles, with statistically similar melting temperatures between pH 4 and 12.5. These results indicate that immobilized high-affinity PBP has the potential to be an effective and reversible bio-adsorbent suitable for Pi recovery from water/wastewater.
Project description:The development of economical de novo gene synthesis methods using microchip-synthesized oligonucleotides has been limited by their high error rates. In this study, a low-cost, effective and improved-throughput (up to 32 oligos per run) error-removal method using an immobilized cellulose column containing the mismatch binding protein MutS was produced to generate high-quality DNA from oligos, particularly microchip-synthesized oligonucleotides. Error-containing DNA in the initial material was specifically retained on the MutS-immobilized cellulose column (MICC), and error-depleted DNA in the eluate was collected for downstream gene assembly. Significantly, this method improved a population of synthetic enhanced green fluorescent protein (720 bp) clones from 0.93% to 83.22%, corresponding to a decrease in the error frequency of synthetic gene from 11.44/kb to 0.46/kb. In addition, a parallel multiplex MICC error-removal strategy was also evaluated in assembling 11 genes encoding ∼21 kb of DNA from 893 oligos. The error frequency was reduced by 21.59-fold (from 14.25/kb to 0.66/kb), resulting in a 24.48-fold increase in the percentage of error-free assembled fragments (from 3.23% to 79.07%). Furthermore, the standard MICC error-removal process could be completed within 1.5 h at a cost as low as $0.374 per MICC.