Project description:To better understand the regulatory mechanisms of water stress response in wheat, the transcript profiles in roots of two wheat genotypes, namely, drought tolerant 'Luohan No.2' (LH) and drought susceptible 'Chinese Spring' (CS) under water-stress were comparatively analyzed by using the Affymetrix wheat GeneChip®. A total of 3831 transcripts displayed 2-fold or more expression changes, 1593 transcripts were induced compared with 2238 transcripts were repressed, in LH under water-stress; Relatively fewer transcripts were drought responsive in CS, 1404 transcripts were induced and 1493 were repressed. Comparatively, 569 transcripts were commonly induced and 424 transcripts commonly repressed in LH and CS under water-stress. 689 transcripts (757 probe sets) identified from LH and 537 transcripts (575 probe sets) from CS were annotated and classified into 10 functional categories, and 74 transcripts derived from 80 probe sets displayed the change ratios no less than 16 in LH or CS. Several kinds of candidate genes were differentially expressed between the LH and CS, which could be responsible for the difference in drought tolerance of the two genotypes.
Project description:Wheat is the staple food of over 35% of the world’s population, accounts for 20% of all human calories, and its yield and quality improvement is a focus in the effort to meet new demands from population growth and changing diets. As the complexity of the wheat genome is unravelled, determining how it is used to build the protein machinery of wheat plants is a key next step in explaining detailed aspects of wheat growth and development. The specific functions of wheat organs during vegetative development and the role of metabolism, protein degradation and remobilisation in driving grain production are the foundations of crop performance and have recently become accessible through studies of the wheat proteome. With the aim of creating a resource complementary to current genome sequencing and assembly projects and to aid researchers in the specific analysis and measurement of wheat proteins of interest, we present a large scale, publicly accessible database of identified peptides and proteins derived from the proteome mapping of Triticum aestivum. This current dataset consists of twenty four organ and developmental samples in an online interactive resource allowing the selection, comparison and retrieval of proteomic data with rich biochemical annotation derived from multiple sources. Tissue specific sub-proteomes and ubiquitously expressed markers of the wheat proteome are identified alongside hierarchical assessment of protein functional classes and their presence in different tissues. The impact of wheat’s polyploid genome on proteome analysis and the effect on defining gene specific and protein family relationships is accounted for in the organisation of the data. The dataset will serve as a vehicle to build, refine and deposit confirmed targeted proteomic assays for wheat proteins and protein families to assess function.
Project description:In present experiment we evaluated the effects of the utrasonication of winter wheat seeds on seedling growth and development. Effect of treatment on the gene transcription and DNA methylation of seedlings were evaluated.
Project description:To better understand the regulatory mechanisms of water stress response in wheat, the transcript profiles in roots of two wheat genotypes, namely, drought tolerant 'Luohan No.2' (LH) and drought susceptible 'Chinese Spring' (CS) under water-stress were comparatively analyzed by using the Affymetrix wheat GeneChip®. A total of 3831 transcripts displayed 2-fold or more expression changes, 1593 transcripts were induced compared with 2238 transcripts were repressed, in LH under water-stress; Relatively fewer transcripts were drought responsive in CS, 1404 transcripts were induced and 1493 were repressed. Comparatively, 569 transcripts were commonly induced and 424 transcripts commonly repressed in LH and CS under water-stress. 689 transcripts (757 probe sets) identified from LH and 537 transcripts (575 probe sets) from CS were annotated and classified into 10 functional categories, and 74 transcripts derived from 80 probe sets displayed the change ratios no less than 16 in LH or CS. Several kinds of candidate genes were differentially expressed between the LH and CS, which could be responsible for the difference in drought tolerance of the two genotypes. Two common wheat (Triticum aestivum L.) cultivars, Luohan No.2 (LH) and Chinese Spring (CS), were used for this study. Seedlings at the two leaf stage were stressed by cultured in PEG solutions for 6h, and some other seedlings were cultured in tap water as control. Root samples of LH and CS at 6h after the stress treatment and untreated control were prepared for microarray analysis.
Project description:To improve the resources for map-based cloning and sequencing of the wheat genome, we established a physical map of the wheat chromosome 1BL with a high density of markers by hybridizing the newly developed INRA GDEC Triticum aestivum NimbleGen 12x17k ISBP microarray (A-MEXP-2312) with BAC pools from the 1BL physical map. Then, we managed to map 3912 ISBP on the wheat chromosome 1BL BACs. The values in the 'Factor Value[individual]' column represent the BAC pool that have been hybridized on the array. For example, the assay 1 correspond to the hybridization of a bulk of all DNA BAC of the plate 1 of the MTP (Minimum Tilling path) BAC library of the chromosome 1BL.
Project description:Purpose: The present study aimed to investigate the anthocyanin components and identify relevant regulatory genes in purple wheat grain by carrying out transcriptome analyses. Methods: The seeds of purple grain wheat and white grain wheat were collected 30 days after flowering, and three biological replicates were set. Total RNA was isolated and purified using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer's procedure. The RNA amount and purity of each sample was quantified using NanoDrop ND-1000. Then synthesizing the fragmented RNA into cDNA through the action of reverse transcriptase, and finally obtaining acDNA library. At last, we performed the 2×150bp paired-end sequencing (PE150) on an Illumina Novaseq™ 6000 following the vendor's recommended protocol. Results: A total of 10440 diferentially expressed genes were signifcantly enriched by RNA sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed signifcantly enriched flavonoid biosynthesis and anthocyanin biosynthesis in CW_S versus W_S. And the ANS and UFGT genes were predicted as core genes in anthocyanin biosynthesis. Conclusions: Our study represents the detailed analysis of wheat grain transcriptomes, with biologic replicates, generated by RNA-seq technology. Through this study, we speculated that ANS and UFGT genes are the core genes of anthocyanin biosynthesis.The significant differences of these genes affect the synthesis of anthocyanins in wheat grains, and thus affect the grain color of wheat.
Project description:The pistillody mutant wheat (Triticum aestivum L.) plant HTS-1 exhibits homeotic transformation of stamens into pistils or pistil-like structures. Unlike common wheat varieties, HTS-1 produces three to six pistils per floret, potentially increasing the yield. Thus, HTS-1 is highly valuable in the study of floral development in wheat. In this study, we conducted RNA sequencing of the transcriptomes of the pistillody stamen (PS) and the pistil (P) from HTS-1 plants, and the stamen (S) from the non-pistillody control variety Chinese Spring TP to gain insights into pistil and stamen development in wheat.