Project description:Transcript changes in response to low temperature Total RNA for RNA-seq analysis were extracted from wheat leaf tissues with three biological replicates for each growth condition.
Project description:We collected infected wheat leaf material at up to nine time points per Z. tritici isolate and conducted confocal microscopy analyses to select samples for RNA extraction and transcriptome sequencing based on the morphological infection stage. Thereby, we generated stage-specific RNA-seq datasets corresponding to the four core infection stages allowing us to compare the isolate-specific expression profiles at the same developmental stage of infection. Our final dataset comprises four stage-specific transcriptomes per isolate with two biological replicates per sample. Comparative transcriptome analyses reveal that the expression phenotypes of the three isolates differ significantly.
Project description:Two different wheat genotypes were treated with the high temperature and control conditions under full irrigated condition. Leaf tissues were collected for all 2-different treatments with six replicates after 7 and 10 days of high temperature treatment.
Project description:Purpose: To identify abiotic stress responsive and tissue specific miRNAs at genome wide level in wheat (Triticum aestivum) Results: Small RNA libraries were constructed from four tissues (root, shoot, mature leaf and spikelets) and three stress treatments of wheat seedlings (control, high temperature, salinity and water-deficit). A total of 59.5 million reads were obtained by high throughput sequencing of eight wheat libraries, of which 32.5 million reads were found to be unique. Using UEA sRNA workbench we identified 47 conserved miRNAs belonging to 20 families, 1030 candidate novel and 51 true novel miRNAs. Several of these miRNAs displayed tissue specific expression whereas few were found to be responsive to abiotic stress treatments. Target genes were predicted for miRNAs identified in this study and their grouping into functional categories revealed that the putative targets were involved in diverse biological processes. RLM-RACE of predicted targets of three conserved miRNAs (miR156, miR160 and miR164) confirmed their mRNA cleavage, thus indicating their regulation at post-transcriptional level by corresponding miRNAs. Expression profiling of confirmed target genes of these miRNAs was also performed. Conclusions: This is the first comprehensive study on profiling of miRNAs in a variety of tissues and in response to several abiotic stresses in wheat. Our findings provide valuable resource for better understanding on the role of miRNAs in stress tolerance as well as plant development. Additionally, this information could be utilized for designing wheat plants for enhanced abiotic stress tolerance and higher productivity.
Project description:Fructans represent the major component of water soluble carbohydrates (WSCs) in the maturing stem of temperate cereals and are an important temporary carbon reserve for grain filling. Theoretically, genotypic variation in carbon reserve accumulation is determined by relative carbon availability and demand at the whole plant level. To evaluate the importance of source carbon availability in fructan accumulation and its associated molecular mechanisms, we performed comparative analyses of individual WSC components and the expression profiles of genes involved in major carbohydrate metabolism and photosynthesis in flag leaves of recombinant inbred lines derived from a cross between wheat cultivars Seri M82 and Babax (SB lines). High sucrose levels in the mature flag leaf (source carbon organ) were found to be positively associated with WSC and fructan concentrations in both the leaf and stem of SB lines in several field trials. Analysis of Affymetrix expression array data revealed that high leaf sucrose lines grown in abiotic-stress-prone environments had high expression levels of a number of genes in the leaf involved in the sucrose synthetic pathway and photosynthesis, such as Calvin cycle genes, antioxidant genes involved in the removal of chloroplast H2O2 and genes involved in energy dissipation. The expression of the majority of genes involved in fructan and starch synthetic pathways were positively correlated with sucrose levels in the leaves of these SB lines.
Project description:To better understand the regulatory mechanisms of water stress response in wheat, the transcript profiles in roots of two wheat genotypes, namely, drought tolerant 'Luohan No.2' (LH) and drought susceptible 'Chinese Spring' (CS) under water-stress were comparatively analyzed by using the Affymetrix wheat GeneChip®. A total of 3831 transcripts displayed 2-fold or more expression changes, 1593 transcripts were induced compared with 2238 transcripts were repressed, in LH under water-stress; Relatively fewer transcripts were drought responsive in CS, 1404 transcripts were induced and 1493 were repressed. Comparatively, 569 transcripts were commonly induced and 424 transcripts commonly repressed in LH and CS under water-stress. 689 transcripts (757 probe sets) identified from LH and 537 transcripts (575 probe sets) from CS were annotated and classified into 10 functional categories, and 74 transcripts derived from 80 probe sets displayed the change ratios no less than 16 in LH or CS. Several kinds of candidate genes were differentially expressed between the LH and CS, which could be responsible for the difference in drought tolerance of the two genotypes. Two common wheat (Triticum aestivum L.) cultivars, Luohan No.2 (LH) and Chinese Spring (CS), were used for this study. Seedlings at the two leaf stage were stressed by cultured in PEG solutions for 6h, and some other seedlings were cultured in tap water as control. Root samples of LH and CS at 6h after the stress treatment and untreated control were prepared for microarray analysis.
Project description:To better understand the regulatory mechanisms of water stress response in wheat, the transcript profiles in roots of two wheat genotypes, namely, drought tolerant 'Luohan No.2' (LH) and drought susceptible 'Chinese Spring' (CS) under water-stress were comparatively analyzed by using the Affymetrix wheat GeneChip®. A total of 3831 transcripts displayed 2-fold or more expression changes, 1593 transcripts were induced compared with 2238 transcripts were repressed, in LH under water-stress; Relatively fewer transcripts were drought responsive in CS, 1404 transcripts were induced and 1493 were repressed. Comparatively, 569 transcripts were commonly induced and 424 transcripts commonly repressed in LH and CS under water-stress. 689 transcripts (757 probe sets) identified from LH and 537 transcripts (575 probe sets) from CS were annotated and classified into 10 functional categories, and 74 transcripts derived from 80 probe sets displayed the change ratios no less than 16 in LH or CS. Several kinds of candidate genes were differentially expressed between the LH and CS, which could be responsible for the difference in drought tolerance of the two genotypes.
Project description:Wheat is the staple food of over 35% of the world’s population, accounts for 20% of all human calories, and its yield and quality improvement is a focus in the effort to meet new demands from population growth and changing diets. As the complexity of the wheat genome is unravelled, determining how it is used to build the protein machinery of wheat plants is a key next step in explaining detailed aspects of wheat growth and development. The specific functions of wheat organs during vegetative development and the role of metabolism, protein degradation and remobilisation in driving grain production are the foundations of crop performance and have recently become accessible through studies of the wheat proteome. With the aim of creating a resource complementary to current genome sequencing and assembly projects and to aid researchers in the specific analysis and measurement of wheat proteins of interest, we present a large scale, publicly accessible database of identified peptides and proteins derived from the proteome mapping of Triticum aestivum. This current dataset consists of twenty four organ and developmental samples in an online interactive resource allowing the selection, comparison and retrieval of proteomic data with rich biochemical annotation derived from multiple sources. Tissue specific sub-proteomes and ubiquitously expressed markers of the wheat proteome are identified alongside hierarchical assessment of protein functional classes and their presence in different tissues. The impact of wheat’s polyploid genome on proteome analysis and the effect on defining gene specific and protein family relationships is accounted for in the organisation of the data. The dataset will serve as a vehicle to build, refine and deposit confirmed targeted proteomic assays for wheat proteins and protein families to assess function.