Project description:Foxp3+ regulatory T cells (Treg) play a central role for tolerance against self and innocuous environmental antigens. However, the role of antigen-specificity for Treg-mediated tolerance is only incompletely understood. Here we show by direct ex vivo characterization of human CD4+ T cells, that the response against innocuous airborne antigens, such as plant pollen or fungal spores, is dominated by memory-like antigen-specific Treg. Surprisingly, breakdown of tolerance in atopic donors was not accompanied by a quantitatively or qualitatively altered Treg response, but instead correlated with a striking dichotomy of Treg versus Th2 target specificity. Allergenic proteins, are selectively targeted by Th2 cells, but not Treg. Thus human Treg specific for airborne antigens maintain tolerance at mucosal sites and the failure to generate specific Treg against a subgroup of antigens provides a window of opportunity for allergy development. PBMCs from sex and age matched birch pollen allergic patients and healthy controls, were stimulated (7h) with airborne fungal (A. fumigatus) or birch pollen antigen (birch) and sorted into antigen specific conventional and regulatory T cells according to their expression of CD154+ and CD137+ on CD4+ T cells, respectively. Number of samples per group in parentheses: Healthy controls stimulated with A. fumigatus (n=5), allergic patients stimulated with A. fumigatus (n=6), healthy controls stimulated with birch (n=6), allergic patients stimulated with birch (n=4).
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:DNA, RNA and protein were extracted from the culture and subjected to massive parallel sequencing and nano-LC-MS-MS respectively Combination of these methods enabled the reconstruction of the complete genome sequence of M oxyfera from the metagenome and identification of the functionally relevant enzymes and genes
Project description:We report changes in H3K27ac following LPS stimulation in Detroit 562 cells. We were able to identified LPS-increased H3K27ac regions which correlated with RELA binding as well as gene up-regulation. This data set is relevant for airborne bacterial sensing as Detroit 562 cells are nasopharyngeal epithelial cells and LPS is a gram negative bacterial endotoxin.
Project description:The study aimed at evaluation and comparison of airway epithelium mRNA profile in response to airborne particulate matter presented by macrophages using in vitro triple cell co-culture model.