Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes.
Project description:The gene expression of Bacillus subtilis 168 showed 3 major patterns including early expression, transition expression and late expression We monitored Bacillus subtilis gene expression by using microarray at differernt time points
Project description:This SuperSeries is composed of the following subset Series: GSE27650: Bacillus subtilis SigA ChIP-chip (BsubT1 array) GSE27665: Bacillus subtilis SigA ChIP-chip (BsubT2 array) Refer to individual Series
Project description:Transcriptome comparison of Bacillus subtilis Natto under sliding permissive (0.7% agar) and restrictive (1.5% agar or spo0A mutant strain) conditions.
Project description:In this study two genome-reduced Bacillus subtilis strains lacking about 36% of dispensable genetic information were constructed using a markerless and scarless deletion method. In order to analyze the consequences of the deletions for the bacteria, a multi-omics characterization of the reference strain Δ6 (Westers et al., 2003; PMID 12949151) and the two deletion strains was carried out. Bacteria were cultivated in complex medium supplemented with glucose, and samples of the same cultures were subjected to metabolome, proteome, and transcriptome analyses.These revealed a massive re-organization of metabolism as well as substantial changes in the transcriptome and the proteome.
Project description:Soybeans fermented by Bacillus subtilis BJ3-2 exhibits strong ammonia taste in medium temperature below 37℃ and prominent soy sauce-like aroma moderate temperatures above 45℃. The transcriptome sequencing of Bacillus subtilis BJ3-2 (incubating at 37°C and 45°C) has been completed, screening of differentially expressed genes (DEGs) through data analysis, and analyzing their metabolic pathways, laying a foundation for exploring the regulatory mechanism of soy sauce-like aroma formation.