Project description:Chinese cordyceps is of particular interest for its confined distribution, mysterious lifecycle, ecological importance and developmental biology. The large scale artificial cultivation of this fungus has been succeeded in China until recently but with low efficiency and high cost being ascribed to too much unsolved biological issues, such as gene expression during development and the sexuality reproduction. The success of artificial cultivation provides the convenient for sampling during the different development stages.
Project description:Ophiocordyceps sinensis (Berk.), syn. Cordyceps sinensis, belongs to Ascomycetes and has been used as a traditional Chinese Medicine (TCM) in Asia countries over 2,000 y. It naturally inhabits in the Qinghai-Tibetan Plateau with an altitude of 3,000-5,000 m. Till now, over 20 bioactive ingredients exert over 30 activities. Several active peptides have been discovered from both the prokaryotes and eukaryotes. To reveal the differential protein profiles in different growth stages and ‘between the artificial one and the wild one’ , here the proteome data of the three adjacent growth stages and wild one were sequenced by using iTRAQ.
Project description:Ophiocordyceps sinensis has been used as a traditional medicine or healthy food in China for thousands of years. Hirsutella sinensis was reported as the only correct anamorph of O. sinensis. It is reported that the laboratory-grown H. sinensis mycelium has similar clinical efficacy and less associated toxicity compared to the wild O. sinensis. The research of the H. sinensis is becoming more and more important and urgent. To gain deeper insight into the biological and pharmacological mechanisms, we sequenced the genome of H. sinensis. The genome of H. sinensis (102.72 Mb) was obtained for the first time, with > 99% coverage. 10,200 protein-encoding genes were predicted based on the genome sequence. A detailed secondary metabolism analysis and structure verification of the main ingredients were performed, and the biosynthesis pathways of seven ingredients (mannitol, cordycepin, purine nucleotides, pyrimidine nucleotides, unsaturated fatty acid, cordyceps polysaccharide and sphingolipid) were predicted and drawn. Furthermore, infection process and mechanism of H. sinensis were studied and elaborated in this article. The enzymes involved in the infection mechanism were also predicted, cloned and expressed to verify the mechanism. The genes and proteins were predicted and annotated based on the genome sequence. The pathways of several active components in H. sinensis were predicted and key enzymes were confirmed. The work presented here would improve the understanding of the genetic basis of this organism, and contribute to further research, production and application of H. sinensis.
Project description:As part of a genome sequencing project for Ophiocordyceps sinensis, strain 1229, a complete mitochondrial (mt) genome was assembled as a single circular dsDNA of 157,510?bp, one of the largest reported for fungi. Conserved genes including the large and small rRNA subunits, 27 tRNA and 15 protein-coding genes, were identified. In addition, 58 non-conserved open reading frames (ncORFs) in the intergenic and intronic regions were also identified. Transcription analyses using RNA-Seq validated the expression of most conserved genes and ncORFs. Fifty-two introns (groups I and II) were found within conserved genes, accounting for 68.5% of the genome. Thirty-two homing endonucleases (HEs) with motif patterns LAGLIDADG (21) and GIY-YIG (11) were identified in group I introns. The ncORFs found in group II introns mostly encoded reverse transcriptases (RTs). As in other hypocrealean fungi, gene contents and order were found to be conserved in the mt genome of O. sinensis, but the genome size was enlarged by longer intergenic regions and numerous introns. Intergenic and intronic regions were composed of abundant repetitive sequences usually associated with mobile elements. It is likely that intronic ncORFs, which encode RTs and HEs, may have contributed to the enlarged mt genome of O. sinensis.
Project description:BackgroundOphiocordyceps sinensis, a worm and fungus combined mixture which Hirsutella sinensis is parasitic on the caterpillar body, has been used as a traditional medicine or healthy food in China for thousands of years. H. sinensis is reported as the only correct anamorph of O. sinensis and its main active ingredients are similar to the natural O. sinensis.ResultsH. sinensis L0106, asexual strain of O. sinensis, was isolated and identified in this study. Three transcriptomes of H. sinensis at different cultivation periods (growth period 3d, pre-stable period 6d and stable period 9d) were sequenced for the first time by RNA-Seq method, and 25,511 unigenes (3d), 25,214 unigenes (6d) and 16,245 unigenes (9d) were assembled and obtained, respectively. These unigenes of the three samples were further assembled into 20,822 unigenes (All), and 62.3 percent of unigenes (All) could be annotated based on protein databases. Subsequently, the genes and enzymes involved in the biosynthesis of the active ingredients according to the sequencing and annotation results were predicted. Based on the predictions, we further investigated the interaction of different pathway networks and the corresponding enzymes. Furthermore, the differentially expressed genes (DEGs) of H. sinensis grown during different developmental stages (3d-VS-6d, 3d-VS-9d and 6d-VS-9d) were globally detected and analyzed based on the data from RNA-Seq, and 764 DEGs between 3d and 6d, 1,869 DEGs between 3d and 9d, and 770 DEGs between 6d and 9d were found, respectively.ConclusionsThis work presented here would aid in understanding and carrying out future studies on the genetic basis of H. sinensis and contribute to the further artificial production and application of this organism. This study provided a substantial contribution and basis to further characterize the gene expression profiles of H. sinensis in the metabolic pathways of active ingredients.
Project description:Bar-HRM is a hybrid method which combines DNA barcoding and High Resolution Melting analysis. It has proven to be a fast, cost-effective and reliable molecular approach for species identification and authentication. Here, three aspects of the use of Bar-HRM are focused on. First, Bar-HRM is used to discriminate between closely related Ophiocordyceps species. Second, identification of an unknown powder that is claimed to be Ophiocordyceps species using Bar-HRM. Third, authenticating the O. sinensis products sold on the market by the Bar-HRM. Results from HRM analyses with ITS primers shows that the two Ophiocordyceps species (Ophiocordyceps sinensis and Ophiocordyceps militaris) were easily differentiated. Also, an unknown sample was able to be identified in less time compared with using DNA barcoding alone. In addition, the substitution or adulteration of O. sinensis products sold on market was detected via Bar-HRM. The substitution or adulteration of inferior Ophiocordyceps species, particularly O. militaris in high price O. sinensis products has been a concern throughout Asia. Based on our results, the Bar-HRM was again proved to be a promising tool for species identification and authentication.