Project description:Background & aim: Flat adenomas form a specific phenotype of colorectal adenomas that has been associated with more severe molecular changes and consequently a more aggressive clinical behavior compared to their polypoid counterparts. In the present study we set out to compare one of the molecular changes most explicitly associated with adenoma to carcinoma progression, i.e. chromosomal instability, between flat and polypoid colorectal adenomas. Methods: Consecutive series of 83 flat and 35 polypoid adenomas were analyzed for DNA copy number changes using a high resolution arrayCGH platform as well as for mutations in the adenomatous polyposis coli (APC) gene. Gene ontology on the genes located on the significantly different regions was performed. Results: Overall, flat adenomas show similar DNA copy number changes as polypoid adenomas. Patterns of DNA copy number changes differed between the two phenotypes with significantly more frequently loss of 5q14.3 and 5q15-q23.3 in flat adenomas, while loss of 1p36.32-p35.3, 10q25.2-q25.3, 17p12 and chromosome 18 were more frequent in polypoid adenomas. The 5q15-q23.3 region harbors the APC locus, therefore mutation status of APC was investigated, showing significantly less mutations in flat adenomas. Pathway analysis and datamining linked the 5q region to inflammation. Conclusion: These results provide evidence that flat and polypoid adenomas have partly overlapping DNA copy number changes, while alterations more specific to flat adenomas have associations with inflammation. Loss of 5q has been associated with aggressive behavior and this could serve as an explanation for a more aggressive clinical behavior of flat lesions.
Project description:Background & aim: Flat adenomas form a specific phenotype of colorectal adenomas that has been associated with more severe molecular changes and consequently a more aggressive clinical behavior compared to their polypoid counterparts. In the present study we set out to compare one of the molecular changes most explicitly associated with adenoma to carcinoma progression, i.e. chromosomal instability, between flat and polypoid colorectal adenomas. Methods: Consecutive series of 83 flat and 35 polypoid adenomas were analyzed for DNA copy number changes using a high resolution arrayCGH platform as well as for mutations in the adenomatous polyposis coli (APC) gene. Gene ontology on the genes located on the significantly different regions was performed. Results: Overall, flat adenomas show similar DNA copy number changes as polypoid adenomas. Patterns of DNA copy number changes differed between the two phenotypes with significantly more frequently loss of 5q14.3 and 5q15-q23.3 in flat adenomas, while loss of 1p36.32-p35.3, 10q25.2-q25.3, 17p12 and chromosome 18 were more frequent in polypoid adenomas. The 5q15-q23.3 region harbors the APC locus, therefore mutation status of APC was investigated, showing significantly less mutations in flat adenomas. Pathway analysis and datamining linked the 5q region to inflammation. Conclusion: These results provide evidence that flat and polypoid adenomas have partly overlapping DNA copy number changes, while alterations more specific to flat adenomas have associations with inflammation. Loss of 5q has been associated with aggressive behavior and this could serve as an explanation for a more aggressive clinical behavior of flat lesions. FFPE colorectal tissue samples of 35 polypoid adenomas and 83 flat adenomas. Test samples were compared to an external pool of normal male/female reference DNA.
Project description:The vestibular sensory epithelium may degenerate into a layer of flat cells, known as flat epithelium, after a severe lesion, but the pathogenesis of vestibular flat epithelium remains unclear. We used microarrays to detail the global programme of gene expression in normal utricle and vestibular flat epithelium and identified whether epithelial-mesenchymal transition participite in this process
Project description:Macronutrients are pivotal elements for proper plant growth and development. We performed microarray analysis of rice leaves under nitrogen (N), phosphorus (P), and potassium (K) deficiency conditions in paddy field to obtain a global view of gene regulations associated with plant response to essential nutrients.
Project description:Investigation of global gene expression changes in Saccharomyces cerevisiae strain NRRL Y-12632 (ATCC® 18824) grown in media made with asbestos mine tailings-laden water compared to the control grown in media made with double distilled water
Project description:Purpose:The mud crab Scylla paramamosain is an economically important marine crab in China suffering from severe outbreaks of infectious disease caused by marine bacteria such as Vibrio Parahaemolyticus, resulting in great economic losses. However, the mechanisms involved in the immune response of this crab to bacterial infection are not fully understood. To understand the molecular mechanisms underlying the immune response to such pathogenic bacteria, we used high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of the mud crab S.paramamosain infected with V.parahaemolyticus. Methods: The hemocytes sampled at 0-24h after infection with V.parahaemolyticus were used for transcriptome analysis. The hemocytes sampled at 24 h after injections with V.parahaemolyticus and no injected 0h(as control) were used for gene expression profiling analysis. Results: A total of 52,934,042 reads were obtained and assembled into 186,193 contigs in transcriptional responses of the V.parahaemolyticus-infected mud crab. Via annotation to the NCBI database and the Swissprot database, we obtained 48,934 identified unigenes. In total, 10,139(20.7%) unigenes were classified into Gene Ontology, and 25,349 unigenes were found in 20 KEGG categories. These genes included representatives from almost all functional categories. By using Solexa/Illumina's DeepSAGE, 1213 differentially expressed genes (P value < 0.05) were detected in comparative analysis of the expression profiles between V.parahaemolyticus-infected crabs and control crabs, including 538 remarkably upregulated genes and 675 remarkably downregulated genes. Conclusions: Based on our results, we conclude that the inflammatory response may play an important role in the early stages of infection. The signaling cascades such as the chemokine, JAK-STAT, and MAPK pathways are regulated by V.parahaemolyticus infection. These results revealed changes of multiple signaling pathways involved in immunity during V.parahaemolyticus infection, which will facilitate our comprehensive understanding of the mechanisms involved in the immune response to bacterial infection in the mud crab.