Project description:With regulatory roles in development, cell proliferation and disease, micro-RNA (miRNA) biology is of great importance and a potential key to novel RNA-based therapeutic regimens. Biochemically based sequencing approaches have provided robust means of uncovering miRNA binding landscapes on transcriptomes of various species. However, a current limitation to the therapeutic potential of miRNA biology in cattle is the lack of validated miRNAs targets. Here, we use cross-linking immunoprecipitation (CLIP) of the Argonaute (AGO) proteins and unambiguous miRNA-target identification through RNA chimeras to define a regulatory map of miRNA interactions in the cow (Bos taurus). The resulting interactome is the deepest reported to date for any species, demonstrating that comprehensive maps can be empirically obtained. We observe that bovine miRNA targeting principles are consistent with those observed in other mammals. Motif and structural analyses define expanded pairing rules with most interactions combining seed-based pairing with distinct, miRNA-specific patterns of auxiliary pairing. Further, miRNA-target chimeras had predictive value in evaluating true regulatory sites of the miR-17 family. Finally, we define miRNA-specific targeting for >5000 mRNAs and determine gene ontologies (GO) for these targets. This confirmed repression of genes important for embryonic development and cell cycle progress by the let-7 family, and repression of those involved in cell cycle arrest by the miR-17 family, but it also suggested a number of unappreciated miRNA functions. Our results provide a significant resource for transcriptomic understanding of bovine miRNA regulation, and demonstrate the power of experimental methods for establishing comprehensive interaction maps.
Project description:The Gayal (Bos frontalis) is a rare semi-domesticated cattle in China. Gayal has typical beef body shape and good meat production performance. Compared with other cattle species, it has the characteristics of tender meat and extremely low fat content. To explore the underlying mechanism responsible for the differences of meat quality between different breeds, the longissimus dorsi muscle (LM) from Gayal and Banna cattle (Bos taurus) were investigated using transcriptome analysis. The gene expression profiling identified 638 differentially expressed genes (DEGs) between LM muscles from Gayal and Banna cattle. Gene Ontology (GO) enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene products were mainly involved in the PPAR signaling pathway, lipid metabolism and amino acid metabolism pathway. Protein-protein interaction(PPI) network analysis showed APOB, CYP7A1, THBS2, ITGAV, IGFBP1 and IGF2R may have great impact on meat quality characteristics of Gayal. Moreover, three transcription factors, FOXA2, NEUROG2, and RUNX1, which may affect meat quality by regulating the expression of genes related to muscle growth and development have also been found. In summary, our research reveals the molecular mechanisms that cause Gayal meat quality characteristics. It will contribute to improving meat quality of cattle through molecular breeding.