Project description:Reduced membrane fouling in an anaerobic electrochemical membrane bioreactors using graphene-coated hollow fiber membranes as the cathode
Project description:Membrane fouling presents the greatest challenge to the application of membrane bioreactor (MBR) technology. Formation of biofilms on the membrane surface is the suggested cause, yet little is known of the composition or dynamics of the microbial community responsible. To gain an insight into this important question, we applied 16S rRNA gene amplicon sequencing with a curated taxonomy and fluorescent in situ hybridization to monitor the community of a pilot-scale MBR carrying out enhanced biological nitrogen and phosphorus removal with municipal wastewater. In order to track the dynamics of the fouling process, we concurrently investigated the communities of the biofilm, MBR bulk sludge, and the conventional activated sludge system used to seed the MBR system over several weeks from start-up. As the biofilm matured the initially abundant betaproteobacterial genera Limnohabitans, Hydrogenophaga and Malikia were succeeded by filamentous Chloroflexi and Gordonia as the abundant species. This study indicates that, although putative pioneer species appear, the biofilm became increasingly similar to the bulk community with time. This suggests that the microbial population in bulk water will largely determine the community structure of the mature biofilm.
Project description:Caulobacter crescentus is unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFa and RsaFb, that, together with other components, form a type I protein translocation pathway for S-layer export. RsaFa and RsaFb are required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFa and RsaFb led to a general growth defect and lowered cellular fitness. We show that loss of both RsaFa and RsaFb led to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein mis-folding and degradation pathways. These findings provide new insight into the requirement for RsaFa and RsaFb in cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels in C. crescentus.