Project description:Incomplete antibiotic removal in pharmaceutical wastewater treatment plants (PWWTPs) could lead to the development and spread of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in the environment, posing a growing public health threat. In this study, two multiantibiotic-resistant bacteria, Ochrobactrum intermedium (N1) and Stenotrophomonas acidaminiphila (N2), were isolated from the sludge of a PWWTP in Guangzhou, China. The N1 strain was highly resistant to ampicillin, cefazolin, chloramphenicol, tetracycline, and norfloxacin, while the N2 strain exhibited high resistance to ampicillin, chloramphenicol, and cefazolin. Whole-genome sequencing revealed that N1 and N2 had genome sizes of 0.52 Mb and 0.37 Mb, respectively, and harbored 33 and 24 ARGs, respectively. The main resistance mechanism in the identified ARGs included efflux pumps, enzymatic degradation, and target bypass, with the N1 strain possessing more multidrug-resistant efflux pumps than the N2 strain (22 vs 12). This also accounts for the broader resistance spectrum of N1 than of N2 in antimicrobial susceptibility tests. Additionally, both genomes contain numerous mobile genetic elements (89 and 21 genes, respectively) and virulence factors (276 and 250 factors, respectively), suggesting their potential for horizontal transfer and pathogenicity. Overall, this research provides insights into the potential risks posed by ARBs in pharmaceutical wastewater and emphasizes the need for further studies on their impact and mitigation strategies.
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humans’ age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humansM-bM-^@M-^Y age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports The antibiotic resistance gene microarray is custom-designed (Roche NimbleGen), based on a single chip containing 3 internal replicated probe sets of 12 probes per resistance gene, covering the whole 315K 12-plex platform spots.
Project description:Antibiotic resistance genes expressed in the upper respiratory tract of patients infected with influenza viruses were associated with the microbial community and microbial activities. Interactions between the host systemic responses to influenza infection and ARG expression highlight the importance of antibiotic resistance in viral-bacterial co-infection.
Project description:Antibiotic resistance genes expressed in the upper respiratory tract of patients infected with influenza viruses were associated with the microbial community and microbial activities. Interactions between the host systemic responses to influenza infection and ARG expression highlight the importance of antibiotic resistance in viral-bacterial co-infection.
Project description:Antibiotic resistance genes expressed in the upper respiratory tract of patients infected with influenza viruses were associated with the microbial community and microbial activities. Interactions between the host systemic responses to influenza infection and ARG expression highlight the importance of antibiotic resistance in viral-bacterial co-infection.