Project description:The nonrandom distribution of meiotic recombination shapes patterns of inheritance and genome evolution, but chromosomal features governing this distribution are poorly understood. Formation of the DNA double-strand breaks (DSBs) that initiate recombination results in accumulation of Spo11 protein covalently bound to small DNA fragments. We show here that sequencing these fragments provides a genome-wide DSB map of unprecedented resolution and sensitivity. We use this map to explore the influence of large-scale chromosome structures, chromatin, transcription factors, and local sequence composition on DSB distributions. Our analysis supports the view that the recombination terrain is molded by combinatorial and hierarchical interaction of factors that work on widely different size scales. Mechanistic aspects of DSB formation and early processing steps are also uncovered. This map illuminates the occurrence of DSBs in repetitive DNA elements, repair of which can lead to chromosomal rearrangements. We discuss implications for evolutionary dynamics of recombination hotspots. We deep sequenced 4 samples of Spo11 oligos on Roche 454 platform. Three samples are technical replicates of Spo11 oligo products prepared from one meiotic culture and the fourth sample was prepared from an independent culture.
Project description:Meiotic recombination is initiated by the Spo11 endonuclease, which directs DNA double strand breaks at discrete regions in the genome coined hotspots. Here we report the profiles and dynamics of histone modifications at the cores of mouse recombination hotspots in early meiotic prophase. To define the spectrum of possible regulators of histone methylation and acetylation at all stages of meiosis I, expression analyses of histone acetylases/deacetylases (HATs/HDACs) and and HMTs/HDMTs genes when comparing those expressed in spermatogonia, pre-leptotene and leptotene/zygotene versus pachytene meiotic stages.
Project description:Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure directly regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) as a new histone modification, occurring on the nucleosomal lateral surface. We show that H4K44ac is specific to yeast sporulation, rising during yeast meiosis and displaying genome-wide enrichment at recombination hotspots in meiosis. The H4K44 residue is required for normal meiotic recombination, for normal levels of double strand breaks during meiosis, and for optimal sporulation. Non-modifiable substitution H4K44R results in reduced MNase digestion and decreased binding of recombination-associated proteins at hotspots. Our results show that H4K44ac creates an accessible chromatin environment for key proteins to facilitate meiotic recombination. Two samples, one WT MNase-seq and one MNase-seq from yeast with a lysine->arginine mutation at H4K44, no replicates Two replicates each of MNase-seq in WT and H4K44->R mutant yeast grown in YPD or YPA.
Project description:In meiotic prophase, chromosomes are organized into compacted loop arrays to promote homolog pairing and recombination. Here, we probe the architecture of the mouse spermatocyte genome in early and late meiotic prophase using Hi-C. We show that early-prophase chromosomes are arranged as linear arrays of 0.8-1 Mb loops, which extend to 1.5-2 Mb in late prophase as chromosomes compact and homologs undergo synapsis. Topologically associating domains (TADs) are lost in meiotic prophase, suggesting that assembly of the meiotic chromosome axis dramatically reduces the dynamics of chromosome-associated cohesin complexes. While TADs are lost, physically-separated A and B compartments are maintained in meiotic prophase. Moreover, meiotic DNA breaks and inter-homolog crossovers preferentially form in the gene-dense A compartment, revealing a role for chromatin organization in meiotic recombination. Finally, direct detection of inter-homolog contacts genome-wide reveals the structural basis for homolog alignment and juxtaposition by the synaptonemal complex.
Project description:Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure directly regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) as a new histone modification, occurring on the nucleosomal lateral surface. We show that H4K44ac is specific to yeast sporulation, rising during yeast meiosis and displaying genome-wide enrichment at recombination hotspots in meiosis. The H4K44 residue is required for normal meiotic recombination, for normal levels of double strand breaks during meiosis, and for optimal sporulation. Non-modifiable substitution H4K44R results in reduced MNase digestion and decreased binding of recombination-associated proteins at hotspots. Our results show that H4K44ac creates an accessible chromatin environment for key proteins to facilitate meiotic recombination.
Project description:Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure directly regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) as a new histone modification, occurring on the nucleosomal lateral surface. We show that H4K44ac is specific to yeast sporulation, rising during yeast meiosis and displaying genome-wide enrichment at recombination hotspots in meiosis. The H4K44 residue is required for normal meiotic recombination, for normal levels of double strand breaks during meiosis, and for optimal sporulation. Non-modifiable substitution H4K44R results in reduced MNase digestion and decreased binding of recombination-associated proteins at hotspots. Our results show that H4K44ac creates an accessible chromatin environment for key proteins to facilitate meiotic recombination.
Project description:We performed ChIP-seq for the meiotic strand exchange protein DMC1, which marks an early stage in the meiotic recombination pathway, and the chromosome axis protein ASY1, which promotes interhomolog synapsis and recombination in plants, using tissue collected from immature pre-emergence spikes from wild type bread wheat cultivar Chinese Spring plants. To investigate connections between meiotic recombination and chromatin states in wheat, we also performed ChIP-seq for euchromatic (H3K4me3) and constitutive heterochromatic (H3K9me2 and H3K27me1) marks, and mapped genome-wide nucleosome occupancy via micrococcal nuclease sequencing (MNase-seq) using leaf tissue from Chinese Spring.