Project description:Deprivation of peripheral nerve input by cochlear removal in young mice results in dramatic neuron death in the cochlear nucleus (CN). The same manipulation in older mice does not result in significant loss. The molecular basis of this critical period of vulnerability remains largely unknown. Here we identified genes regulated at early time points after cochlear removal at ages when neurons are vulnerable (postnatal day (P)7) or invulnerable (P21) to this challenge. Afferent deprivation regulated very different sets of genes at P7 and P21. These genes showed a variety of functions at both ages, but surprisingly there was no net increase in pro-apoptotic genes at P7. A large set of upregulated immune-related genes was identified at P21. Experiment Overall Design: Mice received unilateral cochlear removals. At 6, 12, 24, and 48 hours after surgery, the CN ipsilateral and contralateral were removed, and RNA isolated from separate pools of tissue for each replicate. Deafferented CN were compared to age-matched and time-matched contralateral, control CN to identify genes regulated by cochlear removal at age P7 and P21.
Project description:We analyzed whether cochlear removal-induced transcriptional changes in the cochlear nucleus (CN) were due to loss of electrical activity in the 8th nerve. Pharmacological activity blockade of the auditory nerve for 24 h resulted in similar expression changes for only a subset of genes. Thus, an additional factor not dependent on action potential-mediated signaling must also regulate transcriptional responses to deafferentation in the CN. Experiment Overall Design: TTX was infused into the cochlea unilaterally via osmotic pumps to block activity in the 8th nerve. CN tissue was dissected out from 10-12 mice per replicate and pooled. Three biological replicates were performed. Gene expression was compared between the ipsilateral and contralateral CN tissue to identify genes transcriptionally regulated after activity deprivation.
Project description:Deprivation of peripheral nerve input by cochlear removal in young mice results in dramatic neuron death in the cochlear nucleus (CN). The same manipulation in older mice does not result in significant loss. The molecular basis of this critical period of vulnerability remains largely unknown. Here we identified genes regulated at early time points after cochlear removal at ages when neurons are vulnerable (postnatal day (P)7) or invulnerable (P21) to this challenge. Afferent deprivation regulated very different sets of genes at P7 and P21. These genes showed a variety of functions at both ages, but surprisingly there was no net increase in pro-apoptotic genes at P7. A large set of upregulated immune-related genes was identified at P21. Keywords: Time Course after Cochlear Removal, Age Comparison
Project description:We analyzed whether cochlear removal-induced transcriptional changes in the cochlear nucleus (CN) were due to loss of electrical activity in the 8th nerve. Pharmacological activity blockade of the auditory nerve for 24 h resulted in similar expression changes for only a subset of genes. Thus, an additional factor not dependent on action potential-mediated signaling must also regulate transcriptional responses to deafferentation in the CN.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:The cochlear nucleus is the first central pathway involved in the processing of peripheral auditory activity. It is heterogeneous in neuronal populations and physiologic responses and is organized in three major subdivisions: the anterior ventral cochlear nucleus (AVCN), the posterior ventral cochlear nucleus (PVCN) and the dorsal cochlear nucleus (DCN). Although each region demonstrates multiple cell types and functions, there are predominant populations of neurons in each region that underlie the principal role each subdivision plays in auditory processing. Little is known of the underlying genetic contribution to these properties. This study sought to identify genes expressed in the subdivisions of the cochlear nucleus that may account for the anatomical and physiological characteristics of each subdivision. These data provide a genetic basis for understanding normal auditory processing in the cochlear nucleus and a template for investigating changes that may occur with hearing loss, the generation and percept of tinnitus, and central processing disorders. Keywords: normal, comparative Brown Norway rats (n=40, female, 45days) were anesthetized and decapitated. Brains were rapidly removed and the subdivisions of the cochlear nucleus (AVCN, PVCN and DCN) dissected on dry ice. Total RNA was extracted and tested for concentration and purity by spectrophotometry and integrity by gel electrophoresis. SAGE was performed using the NlaIII enzyme and Invitrogen SAGE kit. Concatemers were commercially sequenced and imported into eSAGE (Margulies and Innis, 2000) for tag extraction and frequency.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.