Project description:The present study aims to explore chemostat-based transcriptome analysis of mixed cultures by investigating interactions between the yeast S. cerevisiae and the lactic acid bacterium Lb. bulgaricus . S. cerevisiae and Lb. bulgaricus are both frequently encountered in kefir, a fermented dairy product (25). In the context of this study, this binary culture serves as a model for the many traditional food and beverage fermentation processes in which yeasts and lactic acid bacteria occur together (19,26-30). The design of the cultivation conditions was based on the observation that Lb. bulgaricus, but not S. cerevisiae, can use lactose as a carbon source for growth and that S. cerevisiae, but not Lb. bulgaricus, can grow on galactose that is released upon hydrolysis of lactose by the bacterial M-NM-2-galactosidase. Mixed populations of yeasts and lactic acid bacteria occur in many dairy, food and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the co-cultures, five mechanisms of interaction were identified. 1. Lb. bulgaricus hydrolyses lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. bulgaricus, is excreted and provides a carbon source for yeast. 2. In pure cultures, Lb. bulgaricus only grows at increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. 3. Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacteria. 4. A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. bulgaricus. 5. Transcriptome analysis of Lb. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipids metabolism suggesting either a competition of the two microorganisms for fatty acids, or a response to the ethanol produced by S. cerevisiae. To our knowledge, this is the first transcriptome study of a cross-kingdom binary mixed culture that analyses responses of both microorganisms. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigated microbial interaction in mixed populations. To investigate the impact of of co-cultivation with Lb. bulgaricus on S. cerevisiae, a DNA microarray-based transcriptome analysis of S. cerevisiae's response was performed on anaerobic, lactose-limited chemostat cultures grown in the presence and absence of L. bulgaricus.
Project description:The data explore the transcriptional response of strains LY180 and EMFR9 to 5 mM furfural under anaerobic fermentation condition The data explore the transcriptional response of strains LY180 and EMFR35 to 15 mM furfural under anaerobic fermentation condition The expression differences of polyamine transporters in LY180 vs EMFR9 and EMFR35 are further described in RD Geddes,X Wang, LP Yomano, EN Miller, H Zheng, KT Shanmugam, and LO Ingram. 2013. Selected Polyamines and Polyamine Transporters Increase Furfural Tolerance (in preparation for submission to Appl Env Microbiol)
Project description:The data explore the transcriptional response of strain LY180 to 15 mM furfural under anaerobic fermentation conditions. The expression differences of oxidoreductase in LY180 are described.
Project description:Populations of engineered metabolite-producing microorganisms are prone to evolutionary production declines during industrial-scale cultivations. In this study, we develop a synthetic product addiction system in E coli that addicts mevalonic acid production cells to mevalonic acid. Through experimentally simuluated long-term fermentation, we investigate how product-addicted organisms remain stable and avoid formation of genetic subpopulations of fit, non-producing cells.
Project description:In this study, the recombinant Trichoderma reesei strain HJ48 was employed to investigate the differences between anaerobic and aerobic fermentation of glucose, through genome-wide transcription analysis.Analysis of the genes induced under fermentation condition has revealed novel features in T. reesei. Our results how that many genes related to ribosome were expressed more highly under aerobic condition in HJ48.
Project description:In this study, the recombinant Trichoderma reesei strain HJ48 was employed to investigate the differences between anaerobic fermentation of xylose and glucose, through genome-wide transcription analysis. Analysis of the genes induced under fermentation condition has revealed novel features in T. reesei. Our results how that many genes related to ribosome were expressed more highly with xylose than with glucose in HJ48.
Project description:The present study aims to explore chemostat-based transcriptome analysis of mixed cultures by investigating interactions between the yeast S. cerevisiae and the lactic acid bacterium L. bulgaricus . S. cerevisiae and L. bulgaricus are both frequently encountered in kefir, a fermented dairy product. In the context of this study, this binary culture serves as a model for the many traditional food and beverage fermentation processes in which yeasts and lactic acid bacteria occur together. The design of the cultivation conditions was based on the observation that L. bulgaricus, but not S. cerevisiae, can use lactose as a carbon source for growth and that S. cerevisiae, but not L. bulgaricus, can grow on galactose that is released upon hydrolysis of lactose by the bacterial β-galactosidase. Mixed populations of yeasts and lactic acid bacteria occur in many dairy, food and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the co-cultures, five mechanisms of interaction were identified. 1. L. bulgaricus hydrolyses lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by L. bulgaricus, is excreted and provides a carbon source for yeast. 2. In pure cultures, L. bulgaricus only grows at increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. 3. Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacteria. 4. A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by L. bulgaricus. 5. Transcriptome analysis of L. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipids metabolism suggesting either a competition of the two microorganisms for fatty acids, or a response to the ethanol produced by S. cerevisiae.