Project description:Plant growth-promoting rhizobacteria (PGPR) are soil microbes that can promote plant growth and/or increase plant resistance to one or multiple stress conditions. These natural resources are environmentally friendly tools for reducing the use of chemical fertilizers and pesticides and for improving the nutritional quality of plants, including pharmacological metabolites. Coriander (Coriandrum sativumL.), commonly known as cilantro or Chinese parsley, is a worldwide culinary and medicinal plant with both nutritional and medicinal properties. Little is known about how PGPR may promote plant growth or affect metabolite profiles in coriander. Here, by usingAeromonassp. H1 that is a PGPR strain, we investigate how coriander yield and quality could be affected by PGPR with transcriptome insights.
Project description:In this study, we used transcriptomic and hormonomic approaches to examine drought-induced changes in barley roots and leaves and its rhizosphere. By studying hormonal responses, alternative splicing events in barley, and changes in the rhizosphere microbiome, we aimed to provide a comprehensive view of barley drought-adaptive mechanisms and potential plant-microbe interactions under drought stress. This approach improved our understanding of barley adaptive strategies and highlighted the importance of considering plant-microbe interactions in the context of climate change.