Project description:Ammopiptanthus mongolicus is an ecologically important desert plant. To understand the role of miRNA genes in draught and cold stress adaptation, RNA-seq of small RNA in Ammopiptanthus mongolicus was performed.
Project description:Flavonoids are stress-inducible metabolites important for plant-microbe interactions. In contrast to their well-known function in initiating rhizobia nodulation in legumes, it is unclear whether and how flavonoids may contribute to plant stress resistance through affecting non-nodulating bacteria in the root microbiome. Here we show how flavonoids preferentially attracts Aeromonadaceae in Arabidopsis thaliana root microbiome and how flavonoid-dependent recruitment of an Aeromona spp. results in enhanced plant Na_H1 resistance.
Project description:Flavonoids are stress-inducible metabolites important for plant-microbe interactions. In contrast to their well-known function in initiating rhizobia nodulation in legumes, it is unclear whether and how flavonoids may contribute to plant stress resistance through affecting non-nodulating bacteria in the root microbiome. Here we show how flavonoids preferentially attracts Aeromonadaceae in Arabidopsis thaliana root microbiome and how flavonoid-dependent recruitment of an Aeromona spp. results in enhanced plant drought resistance.
Project description:Reaumuria soongorica (Pall.) Maxim., a typical species of desert plant, presents excellent tolerability to adverse environment. Until yet, little is known about the molecular mechanisms of stress tolerance in R. soongorica. Herein, we used the RNA-seq to study the transcriptome of R. soongorica leaves
Project description:Recent studies have shown that several plant species require microbial associations for stress tolerance and survival. In this work, we show that the desert endophytic bacterium Enterobacter sp. SA187 enhances yield and biomass of alfalfa in field trials, revealing a high potential for improving desert agriculture. To understand the underlying molecular mechanisms, we studied SA187 interaction with Arabidopsis thaliana. SA187 colonized surface and inner tissues of Arabidopsis roots and shoots and conferred tolerance to salt and osmotic stresses. Transcriptome, genetic and pharmacological studies revealed that the ethylene signaling pathway plays a key role in mediating SA187-triggered abiotic stress tolerance to plants. While plant ethylene production is not required, our data suggest that SA187 induces abiotic stress tolerance by bacterial production of 2-keto-4-methylthiobutyric acid (KMBA), known be converted into ethylene in planta. These results reveal a part of the complex molecular communication process during beneficial plant-microbe interactions and unravel an important role of ethylene in protecting plants under abiotic stress conditions.
Project description:Ammopiptanthus mongolicus is an ecologically important desert plant. miRNA are endogenous 20-22 nt small RNAs that play important roles in regulating gene expression in plants. To identify to the target genes of miRNA in Ammopiptanthus mongolicus, degradome sequencing was performed and a batch of transcripts were found to be targeted by miRNA. The result is helpful in understanding the roles on miRNA in plant development and environmental stress response.
Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. RNA-Seq analysis of the human gut microbiome during consumption of a plant- or animal-based diet.