Project description:In order to study the function of the Campylobacter jejuni Cj0667 gene, a series of experiments were carried out. Two strains were constructed: a Cj0667 knockout strain and a strain with a second copy over-expressing Cj0667 from an fdxA promoter. The transcriptomes of these were all compared to the wild-type strain. The arrays are all from RNA isolated in mid-exponential growth.
Project description:In order to study the function of the Campylobacter jejuni Cj1103 gene, a series of experiments were carried out. Three strains were constructed: a Cj1103 knockout strain, a strain where the Cj1103 knockout was complemented in trans, and a strain with a second copy over-expressing Cj1103 from an metK promoter. The transcriptomes of these were all compared to the wild-type strain. The arrays are all from RNA isolated in mid-exponential growth from independent biological replicates.
Project description:In order to study the function of the Campylobacter jejuni Cj0138 gene, a series of experiments were carried out. Three strains were constructed: a Cj0138 knockout strain, a strain where the Cj0138 knockout was complemented in trans, and a strain with a second copy over-expressing Cj0138 from an fdxA promoter. The transcriptomes of these were all compared to the wild-type strain. The arrays are all from RNA isolated in mid-exponential growth from independent biological replicates.
Project description:In order to study the function of the Campylobacter jejuni Cj1501 gene, a series of experiments were carried out. Three strains were constructed: a Cj1501 knockout strain, a strain where the Cj1501 knockout was complemented in trans, and a strain with a second copy over-expressing Cj1501 from an fdxA promoter. The transcriptomes of these were all compared to the wild-type strain. The arrays are all from RNA isolated in mid-exponential growth from independent biological replicates.
Project description:Campylobacter jejuni is a human pathogen which causes campylobacteriosis, one of the most widespread zoonotic enteric diseases worldwide. Growth of Campylobacter can be improved through the addition of glutamine to media which serves as the nitrogen source. RNAseq was used to identify the transcriptomic response of Campylobacter jejuni when the nitrogen source was switched from serine (poor growth) to glutamine (good growth) in chemostat cultures.
Project description:Campylobacter jejuni is a human pathogen which causes campylobacteriosis, one of the most widespread zoonotic enteric diseases worldwide. Most cases of sporadic C. jejuni infection occur through the handling or consumption of undercooked chicken meat, or cross-contamination of other foods with raw poultry fluid. A common practice to combat Campylobacter infection is to treat chickens with chlorine which kills the microbe. This analysis aimed to elucidate the transcriptomic response of Campylobacter jejuni treated with hypochlorite through Illumina sequencing. C. jejuni was grown and treated with hypochlorite. Samples were taken 5, 20 and 45 min after treatment for RNAseq analysis.The data generated were compared to the transcriptome pre-exposure to determine C. jejuni's response to hypochlorite.
Project description:Campylobacter jejuni is currently the leading cause of bacterial gastroenteritis in humans. Comparison of multiple Campylobacter strains revealed a high genetic and phenotypic diversity. However, little is known about differences in transcriptome organization, gene expression, and small RNA (sRNA) repertoires. Here we present the first comparative primary transcriptome analysis based on the differential RNA–seq (dRNA–seq) of four C. jejuni isolates. Our approach includes a novel, generic method for the automated annotation of transcriptional start sites (TSS), which allowed us to provide genome-wide promoter maps in the analyzed strains. These global TSS maps are refined through the integration of a SuperGenome approach that allows for a comparative TSS annotation by mapping RNA–seq data of multiple strains into a common coordinate system derived from a whole-genome alignment. Considering the steadily increasing amount of RNA–seq studies, our automated TSS annotation will not only facilitate transcriptome annotation for a wider range of pro- and eukaryotes but can also be adapted for the analysis among different growth or stress conditions. Our comparative dRNA–seq analysis revealed conservation of most TSS, but also single-nucleotide-polymorphisms (SNP) in promoter regions, which lead to strain-specific transcriptional output. Furthermore, we identified strain-specific sRNA repertoires that could contribute to differential gene regulation among strains. In addition, we identified a novel minimal CRISPR-system in Campylobacter of the type-II CRISPR subtype, which relies on the host factor RNase III and a trans-encoded sRNA for maturation of crRNAs. This minimal system of Campylobacter, which seems active in only some strains, employs a unique maturation pathway, since the crRNAs are transcribed from individual promoters in the upstream repeats and thereby minimize the requirements for the maturation machinery. Overall, our study provides new insights into strain-specific transcriptome organization and sRNAs, and reveals genes that could modulate phenotypic variation among strains despite high conservation at the DNA level.
Project description:Campylobacter, a major foodborne pathogen, is increasingly resistant to macrolide antibibotics. Previous findings suggested that development of macrolide resistance in Campylobacter requires a multi-step process, but the molecular mechanisms involved in the process are not known. In our study, erythromycin-resistant C. jejuni mutant (R) was selected in vitro by stepwise exposure of C. jejuni NCTC11168(S) to increasing concentrations of erythromycin.The resistant were subjected to microarray and the the global transcriptional profile was analyzed. In this series, DNA microarray was used to compare the gene expression profiles of the macrolide-resistant strain with its parent wild-type strain NCTC11168. A large number of gene showed significant changes in R. The up-regulated genes in the resistant strains are involved in miscellaneous periplasmic proteins, efflux protein and putative aminotransferase, while the majority of the down-regulated genes are involved in electron transport, lipoprotein, heat shock protein and unknown function proteins. The over-expression of efflux pump and periplasmic protein was involved in the development of resistance to macrolide in C. jejuni. An eight chip study using total RNA recovered from four separate resistant-type cultures of Erythrocin-resistant Campylobacter jejuni NCTC111168 (R) and four separate cultures of Campylobacter jejuni NCTC111168 (S). Each chip measures the expression level of 1634 genes from Campylobacter jejuni NCTC11168.