Project description:In order to study the function of the Campylobacter jejuni Cj0667 gene, a series of experiments were carried out. Two strains were constructed: a Cj0667 knockout strain and a strain with a second copy over-expressing Cj0667 from an fdxA promoter. The transcriptomes of these were all compared to the wild-type strain. The arrays are all from RNA isolated in mid-exponential growth.
Project description:In order to study the function of the Campylobacter jejuni Cj1103 gene, a series of experiments were carried out. Three strains were constructed: a Cj1103 knockout strain, a strain where the Cj1103 knockout was complemented in trans, and a strain with a second copy over-expressing Cj1103 from an metK promoter. The transcriptomes of these were all compared to the wild-type strain. The arrays are all from RNA isolated in mid-exponential growth from independent biological replicates.
Project description:In order to study the function of the Campylobacter jejuni Cj0138 gene, a series of experiments were carried out. Three strains were constructed: a Cj0138 knockout strain, a strain where the Cj0138 knockout was complemented in trans, and a strain with a second copy over-expressing Cj0138 from an fdxA promoter. The transcriptomes of these were all compared to the wild-type strain. The arrays are all from RNA isolated in mid-exponential growth from independent biological replicates.
Project description:In order to study the function of the Campylobacter jejuni Cj1501 gene, a series of experiments were carried out. Three strains were constructed: a Cj1501 knockout strain, a strain where the Cj1501 knockout was complemented in trans, and a strain with a second copy over-expressing Cj1501 from an fdxA promoter. The transcriptomes of these were all compared to the wild-type strain. The arrays are all from RNA isolated in mid-exponential growth from independent biological replicates.
Project description:Campylobacter jejuni is a human pathogen which causes campylobacteriosis, one of the most widespread zoonotic enteric diseases worldwide. Growth of Campylobacter can be improved through the addition of glutamine to media which serves as the nitrogen source. RNAseq was used to identify the transcriptomic response of Campylobacter jejuni when the nitrogen source was switched from serine (poor growth) to glutamine (good growth) in chemostat cultures.
Project description:Campylobacter jejuni is a human pathogen which causes campylobacteriosis, one of the most widespread zoonotic enteric diseases worldwide. Most cases of sporadic C. jejuni infection occur through the handling or consumption of undercooked chicken meat, or cross-contamination of other foods with raw poultry fluid. A common practice to combat Campylobacter infection is to treat chickens with chlorine which kills the microbe. This analysis aimed to elucidate the transcriptomic response of Campylobacter jejuni treated with hypochlorite through Illumina sequencing. C. jejuni was grown and treated with hypochlorite. Samples were taken 5, 20 and 45 min after treatment for RNAseq analysis.The data generated were compared to the transcriptome pre-exposure to determine C. jejuni's response to hypochlorite.
Project description:Campylobacter jejuni is currently the leading cause of bacterial gastroenteritis in humans. Comparison of multiple Campylobacter strains revealed a high genetic and phenotypic diversity. However, little is known about differences in transcriptome organization, gene expression, and small RNA (sRNA) repertoires. Here we present the first comparative primary transcriptome analysis based on the differential RNA–seq (dRNA–seq) of four C. jejuni isolates. Our approach includes a novel, generic method for the automated annotation of transcriptional start sites (TSS), which allowed us to provide genome-wide promoter maps in the analyzed strains. These global TSS maps are refined through the integration of a SuperGenome approach that allows for a comparative TSS annotation by mapping RNA–seq data of multiple strains into a common coordinate system derived from a whole-genome alignment. Considering the steadily increasing amount of RNA–seq studies, our automated TSS annotation will not only facilitate transcriptome annotation for a wider range of pro- and eukaryotes but can also be adapted for the analysis among different growth or stress conditions. Our comparative dRNA–seq analysis revealed conservation of most TSS, but also single-nucleotide-polymorphisms (SNP) in promoter regions, which lead to strain-specific transcriptional output. Furthermore, we identified strain-specific sRNA repertoires that could contribute to differential gene regulation among strains. In addition, we identified a novel minimal CRISPR-system in Campylobacter of the type-II CRISPR subtype, which relies on the host factor RNase III and a trans-encoded sRNA for maturation of crRNAs. This minimal system of Campylobacter, which seems active in only some strains, employs a unique maturation pathway, since the crRNAs are transcribed from individual promoters in the upstream repeats and thereby minimize the requirements for the maturation machinery. Overall, our study provides new insights into strain-specific transcriptome organization and sRNAs, and reveals genes that could modulate phenotypic variation among strains despite high conservation at the DNA level.
Project description:Background: The food-borne pathogen Campylobacter is one of the most important zoonotic pathogens. Compared to other zoonotic bacteria, Campylobacter species are quite susceptible to environmental or technological stressors. This might be due to the lack of many stress response mechanisms described in other bacteria. Nevertheless, Campylobacter is able to survive in the environment and food products. Although some aspects of the heat stress response in Campylobacter (C.) jejuni are already known, information about the heat stress response in the related species C. coli and C. lari are still unknown. Results: The stress response to elevated temperatures (46°C) was investigated by survival assays and whole transcriptome analyses for the strain C. jejuni NCTC11168, C. coli RM2228 and C. lari RM2100. While C. jejuni showed highest thermotolerance followed by C. lari and C. coli, none of the strains survived at this temperature for more than 24 hours. Transcriptomic analyses revealed that only 3 % of the genes in C. jejuni and approx. 20 % of the genes of C. coli and C. lari were differentially expressed after heat stress, respectively. The transcriptomic profiles showed enhanced gene expression of several chaperones like dnaK, groES, groEL and clpB in all strains, but differences in the gene expression of transcriptional regulators like hspR, perR as well as for genes involved in metabolic pathways, translation processes and membrane components. However, the function of many of the differentially expressed gene is unknown so far. Conclusion: We could demonstrate differences in the ability to survive at elevated temperatures for C. jejuni, C. coli and C. lari and showed for the first time transcriptomic analyses of the heat stress response of C. coli and C. lari. Our data suggest that the heat stress response of C. coli and C. lari are more similar to each other compared to C. jejuni, even though on genetic level a higher homology exists between C. jejuni and C. coli. This indicates that stress response mechanisms described for C. jejuni might be unique for this species and not necessarily transferable to other Campylobacter species.
Project description:Background: The food-borne pathogen Campylobacter is one of the most important zoonotic pathogens. Compared to other zoonotic bacteria, Campylobacter species are quite susceptible to environmental or technological stressors. This might be due to the lack of many stress response mechanisms described in other bacteria. Nevertheless, Campylobacter is able to survive in the environment and food products. Although some aspects of the heat stress response in Campylobacter (C.) jejuni are already known, information about the heat stress response in the related species C. coli and C. lari are still unknown. Results: The stress response to elevated temperatures (46°C) was investigated by survival assays and whole transcriptome analyses for the strain C. jejuni NCTC11168, C. coli RM2228 and C. lari RM2100. While C. jejuni showed highest thermotolerance followed by C. lari and C. coli, none of the strains survived at this temperature for more than 24 hours. Transcriptomic analyses revealed that only 3 % of the genes in C. jejuni and approx. 20 % of the genes of C. coli and C. lari were differentially expressed after heat stress, respectively. The transcriptomic profiles showed enhanced gene expression of several chaperones like dnaK, groES, groEL and clpB in all strains, but differences in the gene expression of transcriptional regulators like hspR, perR as well as for genes involved in metabolic pathways, translation processes and membrane components. However, the function of many of the differentially expressed gene is unknown so far. Conclusion: We could demonstrate differences in the ability to survive at elevated temperatures for C. jejuni, C. coli and C. lari and showed for the first time transcriptomic analyses of the heat stress response of C. coli and C. lari. Our data suggest that the heat stress response of C. coli and C. lari are more similar to each other compared to C. jejuni, even though on genetic level a higher homology exists between C. jejuni and C. coli. This indicates that stress response mechanisms described for C. jejuni might be unique for this species and not necessarily transferable to other Campylobacter species.