Project description:Hong2004 - Genome-scale metabolic network of
Mannheimia succiniciproducens (iSH335)
This model is described in the article:
The genome sequence of the
capnophilic rumen bacterium Mannheimia succiniciproducens.
Hong SH, Kim JS, Lee SY, In YH, Choi
SS, Rih JK, Kim CH, Jeong H, Hur CG, Kim JJ.
Nat. Biotechnol. 2004 Oct; 22(10):
1275-1281
Abstract:
The rumen represents the first section of a ruminant
animal's stomach, where feed is collected and mixed with
microorganisms for initial digestion. The major gas produced in
the rumen is CO(2) (65.5 mol%), yet the metabolic
characteristics of capnophilic (CO(2)-loving) microorganisms
are not well understood. Here we report the 2,314,078 base pair
genome sequence of Mannheimia succiniciproducens MBEL55E, a
recently isolated capnophilic Gram-negative bacterium from
bovine rumen, and analyze its genome contents and metabolic
characteristics. The metabolism of M. succiniciproducens was
found to be well adapted to the oxygen-free rumen by using
fumarate as a major electron acceptor. Genome-scale metabolic
flux analysis indicated that CO(2) is important for the
carboxylation of phosphoenolpyruvate to oxaloacetate, which is
converted to succinic acid by the reductive tricarboxylic acid
cycle and menaquinone systems. This characteristic metabolism
allows highly efficient production of succinic acid, an
important four-carbon industrial chemical.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180025.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Multi-omics integration analysis of rumen microorganisms isolated from cows fed either an ad lib or restricted diet, and comparing this with methane emission rates for the cows.
Project description:A healthy rumen is crucial for normal growth and improved production performance of ruminant animals. Rumen microbes participate in and regulate rumen epithelial function, and the diverse metabolites produced by rumen microbes are important participants in rumen microbe-host interactions. SCFAs, as metabolites of rumen microbes, have been widely studied, and propionate and butyrate have been proven to promote rumen epithelial cell proliferation. Succinate, as an intermediate metabolite in the citric acid cycle, is a final product in the metabolism of certain rumen microbes, and is also an intermediate product in the microbial synthesis pathway of propionate. However, its effect on rumen microbes and rumen epithelial function has not been studied. It is unclear whether succinate can stimulate rumen epithelial development. Therefore, in this experiment, Chinese Tan sheep were used as experimental animals to conduct a comprehensive analysis of the rumen microbiota community structure and rumen epithelial transcriptome, to explore the role of adding succinate to the diet in the interaction between the rumen microbiota and host.
2023-06-12 | GSE233696 | GEO
Project description:Microorganisms in Hu sheep rumen
| PRJNA1051932 | ENA
Project description:Rumen Microorganisms of dairy cow
| PRJNA1002102 | ENA
Project description:Rumen microorganisms of Tibetan sheep
| PRJNA953839 | ENA
Project description:Rumen microorganisms of Tibetan sheep