Project description:Oocyte developmental potential is progressively obtained as females approach puberty. Therefore, oocytes derived from prepubertal females are less developmentally competent, indicated by decreased embryonic development, compared to oocytes derived from adult females. To investigate mechanisms involved in establishing oocyte cytoplasmic maturation and developmental competence, Affymetrix GeneChip microarrays were used. Keywords: oocyte developmental competence, maternal age Porcine oocytes obtained from prepubertal and adult females were collected for RNA extraction and hybridization on Affymetrix microarrays. Oocytes were aspirated from 2 to 6 mm ovarian follicles and matured in vitro. Analysis of the first extruded polar body ensured that all oocytes used in the analyses had completed nuclear maturation.
Project description:Expression data from prepubertal, peripubertal, and adult derived mouse oocytes, and from germinal vesicle (GV), in vivo matured, and in vitro matured mouse oocytes. Oocytes derived from prepubertal females, or oocytes matured in vitro, are less developmentally competent compared to adult derived, or in vivo matured, oocytes, indicated by decreased embryonic development. One potential mechanism for decreased developmental potetential in prepubertal or in vitro matured oocytes is inadequate or inappropriate RNA degradation during oocyte maturation (progression from GV to MII). To investigate mechanisms involved in establishing oocyte cytoplasmic maturation and developmental competence, Affymetrix GeneChip microarrays were used. Keywords: Oocyte developmental competence
Project description:Expression data from prepubertal, peripubertal, and adult derived mouse oocytes, and from germinal vesicle (GV), in vivo matured, and in vitro matured mouse oocytes. Oocytes derived from prepubertal females, or oocytes matured in vitro, are less developmentally competent compared to adult derived, or in vivo matured, oocytes, indicated by decreased embryonic development. One potential mechanism for decreased developmental potetential in prepubertal or in vitro matured oocytes is inadequate or inappropriate RNA degradation during oocyte maturation (progression from GV to MII). To investigate mechanisms involved in establishing oocyte cytoplasmic maturation and developmental competence, Affymetrix GeneChip microarrays were used. Keywords: Oocyte developmental competence The study encompassed three experimental designs using female B6D2F1 mice: 1) In vitro matured oocytes were obtained from d20 (prepubertal), d26 (peripubertal), and 7-8 wk old (adult) mice; 2) in vivo and in vitro matured oocytes were obtained from d26 mice; and 3) GV, in vivo matured, and in vitro matured oocytes were obtained from 7-8 wk old mice. RNA was extracted from pools of 150 oocytes and hybridized onto the Affymetrix microarrays.
Project description:Developmental competences of oocytes derived from prepubertal heifers are lower than those derived from adult counterparts. The objective of this study was to identify a range of genes associated with reduced oocyte competence that are differentially expressed between adult versus prepubertal donors. Microarray experiments were conducted using total RNA isolated from GV and MII stages oocytes collected from adult and prepubertal animals using Affymetrix GeneChip Bovine Genome Array containing 24,072 probe sets representing over 23,000 transcripts. A total of 549 and 333 genes were differentially expressed between prepubertal versus adult bovine MII and GV stages oocytes respectively. Out of these, 312 and 176 genes were up-regulated, while 237 and 157 were down-regulated in prepubertal when compared with adult MII and GV oocytes respectively. Ontological classification of the differentially expressed genes revealed that up-regulated genes in adult oocytes were involved in signal transduction, regulation of transcription DNA-dependent, and transport. Results from the present study indicated that significant number of genes were differentially expressed (>2-fold, p<0.01) between the two groups. Thus the decreased developmental competence of oocytes from prepubertal heifers may be induced due to difference in gene expression abundance as observed in our study. In conclusion, transcript abundance analyses of oocytes using microarray approach have been carried out in bovine and several other species. However, to our knowledge, this is the first study carried out to examine genes expression differential abundance in oocytes derived from perpubertal versus adult Japanese Black Cattle. Bovine 4b PP biological rep1, Bovine 78b PP biological rep2, Bovine 79 PP biological rep3 represents GV stage oocytes derived from Prepubertal (PP) heifer group, while Bovine 74b A biological rep1, Bovine 80b A biological rep2, Bovine 81 A biological rep3 represents GV stage oocytes derived from Adult (A) cow group. Bovine 7 PP biological rep1, Bovine 53 PP biological rep2, Bovine 57 PP biological rep3 represents MII stage oocytes derived from Prepubertal heifer group, while Bovine 59 A biological rep1, Bovine 70 A biological rep2, Bovine 71 A biological rep3 represents MII stage oocytes from Adult cow group.