Project description:Airway integrity must be continuously maintained throughout life. Sensory neurons guard against airway obstruction and on a moment-by-moment basis, enact vital reflexes to maintain respiratory function. Decreased lung capacity is common and life-threatening across many respiratory diseases, and lung collapse can be acutely evoked by chest wall trauma, pneumothorax, or airway compression. Here, we characterize a neuronal reflex of the vagus nerve evoked by airway closure that leads to gasping. In vivo vagal ganglion imaging revealed dedicated sensory neurons that detect airway compression but not airway stretch. Vagal neurons expressing PVALB mediate airway closure responses, and innervate clusters of lung epithelial cells called neuroepithelial bodies (NEBs). Stimulating NEBs or vagal PVALB neurons evoked gasping in the absence of airway threats, while ablating NEBs or vagal PVALB neurons eliminated gasping to airway closure. Single-cell RNA sequencing revealed that NEBs uniformly express the mechanoreceptor PIEZO2, and targeted knockout of PIEZO2 in NEBs also eliminated responses to airway closure. NEBs are dispensable for the Hering-Breuer inspiratory reflex, indicating that discrete terminal structures detect airway closure and inflation. Like Merkel cells involved in touch sensation, NEBs are PIEZO2-expressing epithelial cells, and moreover, are critical for an aspect of lung mechanosensation. These findings expand our understanding of neuronal diversity in the airways, and reveal a dedicated vagal pathway that detects airway closure to help preserve respiratory function.
Project description:Sensory neurons evoke a suite of defensive reflexes to ensure airway integrity. Dysfunction of laryngeal neurons is life-threatening, causing pulmonary aspiration, dysphagia, and choking, yet relevant sensory pathways remain poorly understood. Here, we discover rare throat-innervating neurons (~100 neurons/mouse) that guard the airways against assault. We used genetic tools that broadly cover a vagal/glossopharyngeal sensory neuron atlas to map, ablate, and control specific afferent populations. Optogenetic activation of vagal P2RY1 neurons evokes a coordinated airway defense program- apnea, vocal fold adduction, swallowing, and expiratory reflexes. Selective ablation of vagal P2RY1 neurons eliminates protective responses to laryngeal water and acid challenge. Anatomical mapping revealed numerous terminal morphologies in the larynx, with P2RY1 neurons forming corpuscular endings that appose laryngeal taste buds. Epithelial cells are primary airway sentinels that communicate with second-order P2RY1 neurons through ATP. These findings provide mechanistic insights into airway defense, and a general molecular/genetic roadmap for internal organ sensation by the vagus nerve.
Project description:Mammalian airways and lungs are richly innervated by bronchopulmonary sensory neurons, the vast majority of which are derived from the vagal sensory ganglia. In the present study we set out to perform high coverage single cell RNA sequencing on a population of identified murine bronchopulmonary sensory neurons collected from the vagal sensory ganglia to better define the molecular expression profiles of these cell types. Given the importance of P2X2 in differentiating nodose from jugular sensory neurons, we further aimed to investigate the relationship between transcriptional expression of identified genes and P2X2 expression.
Project description:Nociceptor neurons play a crucial role in maintaining the body’s homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons’ activity.
Project description:Exaggerated airway constriction triggered by exposure to irritants such as allergen, also called hyperreactivity, is a hallmark of asthma and can be life-threatening. Aside from immune cells, vagal sensory neurons are important for airway hyperreactivity 1-4. However, the identity and signature of the downstream nodes of this adaptive circuit remains poorly understood. Here we show that Dbh+ neurons in the nucleus of the solitary tract (nTS) of the brainstem, and downstream neurons in the nucleus ambiguus (NA), are both necessary and sufficient for chronic allergen-induced airway hyperreactivity. We found that repeated exposures of mice to inhaled allergen activates nTS neurons in a mast cell-, interleukin 4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA-seq followed by RNAscope quantification of the nTS at baseline and following allergen challenges reveals that a Dbh+ population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted, while chemogenetic activation promoted hyperreactivity. Viral tracing indicates that Dbh+ nTS neurons, capable of producing norepinephrine, project to the NA, and NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that then directly drive airway constriction. Focusing on transmitters, delivery of norepinephrine antagonists to the NA blunted allergen-induced hyperreactivity. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. The knowledge opens the possibility of targeting neural modulation as an approach to control refractory allergen-induced airway constriction.
Project description:Exaggerated airway constriction triggered by exposure to irritants such as allergen, also called hyperreactivity, is a hallmark of asthma and can be life-threatening. Aside from immune cells, vagal sensory neurons are important for airway hyperreactivity 1-4. However, the identity and signature of the downstream nodes of this adaptive circuit remains poorly understood. Here we show that Dbh+ neurons in the nucleus of the solitary tract (nTS) of the brainstem, and downstream neurons in the nucleus ambiguus (NA), are both necessary and sufficient for chronic allergen-induced airway hyperreactivity. We found that repeated exposures of mice to inhaled allergen activates nTS neurons in a mast cell-, interleukin 4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA-seq followed by RNAscope quantification of the nTS at baseline and following allergen challenges reveals that a Dbh+ population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted, while chemogenetic activation promoted hyperreactivity. Viral tracing indicates that Dbh+ nTS neurons, capable of producing norepinephrine, project to the NA, and NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that then directly drive airway constriction. Focusing on transmitters, delivery of norepinephrine antagonists to the NA blunted allergen-induced hyperreactivity. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. The knowledge opens the possibility of targeting neural modulation as an approach to control allergen-induced airway constriction.
Project description:Maternal diabetes is a teratogen that can lead to neural tube closure defects in the offspring. We therefore sought to compare gene expression profiles at the site of neural tube closure between stage-matched embryos from normal dams, and embryos from diabetic dams. Neurulation-stage mouse embryos at 8.5 days of gestation were used to prepare neural tissue at the anterior aspect of neural tube closure site 1. Tissue was procured from the open neural tube immediately anterior of the closure site, and from the closed neural tube immediately posterior to the closure site by laser microdissection. For each sample, 10 sections were pooled, total RNA was extracted, and 7 ng of total RNA were used for expression profiling by Tag sequencing using an Applied Biosystems SolidSAGE kit for library construction, and an AB SOLiD 5500 XL instrument for sequencing. Sequence reads were mapped to RefSeq RNA, and count data per gene were obtained using a modified version of the Applied Biosystems SOLiDâ?¢ SAGEâ?¢ Analysis Software. diabetic dam - closed neural tube // diabetic dam - open neural tube // normal dam - closed neural tube // normal dam - open neural tube