Project description:Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures. To maximize PHA production, mixed microbial cultures may be enriched for PHA-producing bacteria with a high storage capacity through the imposition of cyclic, aerobic feast-famine conditions in a sequencing batch reactor (SBR). Though enrichment SBRs have been extensively investigated a bulk solutions-level, little evidence at the proteome level is available to describe the observed SBR behavior to guide future SBR optimization strategies. As such, the purpose of this investigation was to characterize proteome dynamics of a mixed microbial culture in an SBR operated under aerobic feast-famine conditions using fermented dairy manure as the feedstock for PHA production. At the beginning of the SBR cycle, excess PHA precursors were provided to the mixed microbial culture (i.e., feast), after which followed a long duration devoid of exogenous substrate (i.e., famine). Two-dimensional electrophoresis was used to separate protein mixtures during a complete SBR cycle, and proteins of interest were identified.
2017-01-31 | PXD003126 | Pride
Project description:The studied of microbial populations of AOA-SBR system
Project description:Small intestinal bacterial overgrowth (SIBO) has been implicated in symptoms associated with functional gastrointestinal disorders (FGIDs), though mechanisms remain poorly defined and treatment involves non-specific antibiotics. Here we show that SIBO based on duodenal aspirate. culture reflects an overgrowth of anaerobes, does not correspond with patient symptoms, and may be a result of dietary preferences. Small intestinal microbial composition, on the other hand, is significantly altered in symptomatic patients and does not correspond with aspirate culture results. In a pilot interventional study we found that switching from a high fiber diet to a low fiber, high simple sugar diet triggered FGID-related symptoms and decreased small-intestinal microbial diversity and small-intestinal permeability. Our findings demonstrate that characterizing small intestinal microbiomes in patients with gastrointestinal symptoms may allow a more targeted antibacterial or a diet-based approach to treatment.
Project description:Ammonia-oxidizing archaeal (AOA) amoA diversity and relative abundance in Gulf of Mexico sediments (0-2 cm) were investigated using a functional gene microarray; a two color array with a universal internal standard
Project description:Increasing atmospheric CO2 concentrations are causing decreased pH over vast expanses of the ocean. This decreasing pH may alter biogeochemical cycling of carbon and nitrogen via the microbial process of nitrification, a key process that couples these cycles in the ocean, but which is often sensitive to acidic conditions. Recent reports indicate a decrease in oceanic nitrification rates under experimentally lowered pH. How composition and abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA) assemblages respond to decreasing oceanic pH, however, is unknown. We sampled microbes from two different acidification experiments and used a combination of qPCR and functional gene microarrays for the ammonia monooxygenase gene (amoA) to assess how acidification alters the structure of ammonia oxidizer assemblages. We show that despite widely different experimental conditions, acidification consistently altered the community composition of AOB by increasing the relative abundance of taxa related to the Nitrosomonas ureae clade. In one experiment this increase was sufficient to cause an increase in the overall abundance of AOB. There were no systematic shifts in the community structure or abundance of AOA in either experiment. These different responses to acidification underscore the important role of microbial community structure in the resiliency of marine ecosystems. amoA gene diversity from two ocean acidification experiments, Monterey Bay experiment (two time points, ambient and acidified) and Vineyard Sound experiment (ambient and acifidied, with and without nutrients) examined with 2 two-color arrays (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5.
Project description:Ammonia-oxidizing archaea (AOA) play a significant role in global nitrogen and carbon cycling. AOA can survive under fluctuating environmental conditions by modulating gene expression. Little is known about how AOA regulate gene expression to adapt environmental stress. Here, we report a chromatin-driven mechanism of transcription in Nitrososphaera Viennensis (EN76) to adapt to temperature stress. Using computational and biochemical assays, we found EN76 contains an archaeasome structure. We found that several residues, including G20, K57, and T58 of histone, are important to form archaea chromatin structures. In vitro transcription assays revealed that AOA chromatin efficiently controls gene expression, similar to eukaryote chromatin. Furthermore, we identified AOA histone acetylation, which activates gene expression. Moreover, by integrating chromatin-based gene expression analyses, we revealed that AOA differentially regulate gene expression in response to temperature stress by altering archaeasome occupancy. Our study provides unprecedented documentation that AOA fine-tunes gene expression through a chromatin-driven epigenetic mechanism.
Project description:Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis. The DMFT INDEX (Decayed, Missing, Filled [DMF] teeth index used in dental epidemiology) values are provided for each sample We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults.