Project description:PrfA activity was studied in L. monocytogenes strain EGD and in an isogenic prfA deletion mutant (EGDΔprfA) carrying multiple copies of the wild-type prfA or the mutant prfA* gene (strains EGDΔprfApPrfA and EGDΔprfApPrfA*) after growth in brain heart infusion (BHI), Luria-Bertani broth (LB) or a defined minimal medium (MM) supplemented either with one of the three PTS-carbohydrates, glucose, mannose and cellobiose, or the non-PTS carbon source glycerol. Low PrfA activity was observed in the wild-type EGD strain in BHI and LB with either of these carbon sources, while PrfA activity was high in minimal medium in presence of glycerol but significantly reduced in presence of cellobiose. The strains expressing the prfA and prfA* gene under the prfA promoters, P1 and P2, produced equally large amounts of PrfA protein and high PrfA activity was observed in strain EGDΔprfApPrfA* under all growth conditions. In contrast, high PrfA activity in strain EGDΔprfApPrfA was only observed when this strain was cultured in BHI but not in LB or MM (in presence of either carbon source). A ptsH mutant (lacking a functional HPr) was able to grow in BHI suggesting that growth of L. monocytogenes in this culture medium is supported by carbon sources whose uptake and metabolism are independent of the PTS pathway. However, this mutant was unable to grow in LB and MM regardless which of the four carbon sources was added, suggesting that uptake of the used carbohydrates and the catabolism of glycerol depend fully on the functional common PTS pathway. Furthermore, the growth rates of L. monocytogenes are strongly reduced in presence of large amounts of PrfA protein when growing MM but less in LB and only slightly in BHI. The expression profiles of the genes encoding PTS permeases were determined in the three strains under various growth conditions. The data suggest that PrfA activity correlates with the expression level and the phosphorylation state of specific PTS permeases. This SuperSeries is composed of the following subset Series: GSE12143: Listeria monocytogenes EGD after growth BHI vs. LB vs. MM GSE12145: Listeria monocytogenes EGDΔprfApPrfA and EGDΔprfApPrfA* compared to the wild type strain EGD GSE12146: Listeria monocytogenes EGD and EGD-e
Project description:Listeria monocytogenes is able to efficiently utilize glycerol as carbon source. In a defined minimal medium the growth rate is similar (during balanced growth) in presence of glycerol as in presence of glucose or cellobiose. Comparative transcriptome analyses of L. monocytogenes showed in the presence of glycerol (compared to glucose and/or cellobiose) high transcriptional upregulation of the known genes involved in glycerol uptake and metabolism (glpFK, glpD). Expression of the genes encoding a second putative glycerol uptake facilitator (GlpF-2) and a second putative glycerol kinase (GlpK-2) was less enhanced under these conditions. GlpK-1 but not GlpK-2 was essential for glycerol catabolism in L. monocytogenes under extracellular conditions, while loss of GlpK-1 affected replication in Caco-2 cells less than loss of GlpK-2 and GlpD. Additional genes whose transcription was higher in presence of glycerol than in presence of glucose and cellobiose included those for two dihydroxyacetone (Dha) kinases and many genes that are under carbon catabolite repression (CCR) control. Transcriptional down-regulation in the presence of glycerol (compared to glucose and cellobiose) was observed for several genes and operons that are positively regulated by glucose, including genes involved in glycolysis, N-metabolism and biosynthesis of branched chain amino acids. The highest transcriptional up-regulation was observed for all PrfA-dependent genes during early and late logarithmic growth in glycerol. Under these conditions a low level of HPr-Ser-P and a high level of HPr-His-P was present in the cells, suggesting that all EIIA (B) components of the PTS permeases expressed will be phosphorylated. These and other data reported suggest that the phosphorylation state of PTS permeases correlates with PrfA activity. Keywords: Response of Listeria monocytogenes to different carbon sources
Project description:Listeria monocytogenes is able to efficiently utilize glycerol as carbon source. In a defined minimal medium the growth rate is similar (during balanced growth) in presence of glycerol as in presence of glucose or cellobiose. Comparative transcriptome analyses of L. monocytogenes showed in the presence of glycerol (compared to glucose and/or cellobiose) high transcriptional upregulation of the known genes involved in glycerol uptake and metabolism (glpFK, glpD). Expression of the genes encoding a second putative glycerol uptake facilitator (GlpF-2) and a second putative glycerol kinase (GlpK-2) was less enhanced under these conditions. GlpK-1 but not GlpK-2 was essential for glycerol catabolism in L. monocytogenes under extracellular conditions, while loss of GlpK-1 affected replication in Caco-2 cells less than loss of GlpK-2 and GlpD. Additional genes whose transcription was higher in presence of glycerol than in presence of glucose and cellobiose included those for two dihydroxyacetone (Dha) kinases and many genes that are under carbon catabolite repression (CCR) control. Transcriptional down-regulation in the presence of glycerol (compared to glucose and cellobiose) was observed for several genes and operons that are positively regulated by glucose, including genes involved in glycolysis, N-metabolism and biosynthesis of branched chain amino acids. The highest transcriptional up-regulation was observed for all PrfA-dependent genes during early and late logarithmic growth in glycerol. Under these conditions a low level of HPr-Ser-P and a high level of HPr-His-P was present in the cells, suggesting that all EIIA (B) components of the PTS permeases expressed will be phosphorylated. These and other data reported suggest that the phosphorylation state of PTS permeases correlates with PrfA activity. Keywords: Response of Listeria monocytogenes to different carbon sources A total of four independently isolated RNA samples from each condition at each growth phase were used for the analysis. RNA from two isolations were pooled and hybridized onto two microarray slides with dye swap. Another two microarray slides were hybridized using the same principle. In total, we used four RNAs and four microarray slides to generate 16 replicate expression values for each combination except for the comparison between glucose and cellobiose, phase B where data generated from three microarray slides were used for further analysis
Project description:PrfA activity was studied in L. monocytogenes strain EGD and in an isogenic prfA deletion mutant (EGDΔprfA) carrying multiple copies of the wild-type prfA or the mutant prfA* gene (strains EGDΔprfApPrfA and EGDΔprfApPrfA*) after growth in brain heart infusion (BHI), Luria-Bertani broth (LB) or a defined minimal medium (MM) supplemented either with one of the three PTS-carbohydrates, glucose, mannose and cellobiose, or the non-PTS carbon source glycerol. Low PrfA activity was observed in the wild-type EGD strain in BHI and LB with either of these carbon sources, while PrfA activity was high in minimal medium in presence of glycerol but significantly reduced in presence of cellobiose. The strains expressing the prfA and prfA* gene under the prfA promoters, P1 and P2, produced equally large amounts of PrfA protein and high PrfA activity was observed in strain EGDΔprfApPrfA* under all growth conditions. In contrast, high PrfA activity in strain EGDΔprfApPrfA was only observed when this strain was cultured in BHI but not in LB or MM (in presence of either carbon source). A ptsH mutant (lacking a functional HPr) was able to grow in BHI suggesting that growth of L. monocytogenes in this culture medium is supported by carbon sources whose uptake and metabolism are independent of the PTS pathway. However, this mutant was unable to grow in LB and MM regardless which of the four carbon sources was added, suggesting that uptake of the used carbohydrates and the catabolism of glycerol depend fully on the functional common PTS pathway. Furthermore, the growth rates of L. monocytogenes are strongly reduced in presence of large amounts of PrfA protein when growing MM but less in LB and only slightly in BHI. The expression profiles of the genes encoding PTS permeases were determined in the three strains under various growth conditions. The data suggest that PrfA activity correlates with the expression level and the phosphorylation state of specific PTS permeases. This SuperSeries is composed of the SubSeries listed below.
Project description:Listeria monocytogenes SigB and PrfA are pleiotropic regulators of stress response and virulence gene expression, which have been shown to co-regulate genes in L. monocytogenes. We performed whole genome transcriptional profiling in the presence of PrfA* and active SigB, to identify the overlaps between the PrfA virulence regulon and the SigB stress response regulon. In L. monocytogenes, the PrfA* allele contributes to the activation of virulence genes to a level comparable to that of intracellular growing L. monocytogenes. Our results showed that the core PrfA regulon consists of 12 genes previously described as PrfA regulated. Furthermore, we found that the role of SigB during virulence gene regulation changes, dependent on the presence or absence of PrfA*. In the absence of PrfA*, SigB activated the transcription of virulence genes such as inlA and inlB. In the presence of PrfA*, SigB negatively influenced the transcription of genes in the PrfA core regulon. The observed effect of SigB on the transcript level of PrfA regulated genes was shown to reduce the cytotoxic effect of the PrfA* allele in HepG-2 cells. Our results indicate that the SigB-PrfA regulatory network is important for the adjustment of virulence gene transcription to ensure L. monocytogenes success as an intracellular pathogen. Keywords: comparison of gene expression of regulatory mutants
Project description:Phosphopeptides were identified in Listeria monocytogesn strain constitutivally expressing PrfA. Also, the phosphoproteins and proteins were identified that are overexpressed/underextressed in response to PrfA.
Project description:Listeria monocytogenes is a food-borne pathogen which causes listeriosis. It is an intracellular parasite invading the epithelial cells where it escapes from the vacuole into the host cytoplasm to replicate, using actin-based motility to move within and between cells. The intracellular life cycle is well documented whereas the time spent in the lumen of the intestine is poorly understood. The aim of this study was to investigate the mechanism by which L. monocytogenes adapts to the environment of the small intestine prior to invasion. Specifically, to determine if the PrfA regulon, that encodes the virulence factors of L. monocytogenes, is switched on by signals within the intestinal lumen. L. monocytogenes were grown under aerobic or microaerobic conditions with glucose or glycerol as carbon source.
Project description:Comparison of Listeria monocytogenes transcripts in different strains (EGD wild-type versus EGD-e wild-type, EGD-e PrfA* versus EGD-e wild-type).
Project description:Comparison of Listeria monocytogenes transcripts in different strains (EGD wild-type versus EGD-e wild-type, EGD-e PrfA* versus EGD-e wild-type).
Project description:The Listeria monocytogenes genome contains more than 20 genes that encode cell surface-associated proteins termed internalins, which are characterized by the presence of multiple leucine-rich repeats. Subsets of internalin genes have been reported previously as transcriptionally regulated by the stress responsive sigma factor B (inlA, inlB, inlC2 and inlD) and the pleiotropic transcriptional activator PrfA (inlA, inlB, inlC). To investigate contributions of σB and PrfA to internalin gene regulation, we designed a sub-genomic microarray containing two probes for each of the 24 internalin-like genes present in the L. monocytogenes 10403S genome. Competitive microarray hybridization was performed on RNA extracted from (i) the 10403S parent strain and an isogenic ΔsigB strain; (ii) 10403S and an isogenic ΔprfA strain; (iii) a 10403S derivative that expresses the constitutively active PrfA* (G155S) and the ΔprfA strain; and (iv) 10403S and an isogenic ΔsigBΔprfA strain. σB- and PrfA-dependent transcription of selected genes was further confirmed by quantitative reverse transcriptase PCR. Statistical analyses of microarray data demonstrated that use of two probes on a microarray for a given target gene yielded more reliable transcriptional profiling information than use of a single probe. The suitability of the PrfA* strain for examining PrfA-dependent gene expression was established quantitatively by the observation that the plcA and prfA transcript levels generated by the PrfA* strain were similar to those obtained from intracellular L. monocytogenes and significantly higher than those in a wildtype strain grown in BHI broth. Among the 24 internalin-like genes examined, 4 and 6 were positively regulated by PrfA and σB, respectively, including inlA and inlB, which were positively regulated by both PrfA and σB. In summary, our findings clearly establish broad roles for both PrfA and σB in regulating L. monocytogenes internalin gene expression Keywords: Listeria monocytogenes, Internalins, sigB, PrfA, Microarrays