Project description:For the filamentous cyanobacterium Anabaena variabilis to grow without combined nitrogen, certain cells differentiate into heterocysts that fix N2, while vegetative cells perform photosynthesis. Much remains unknown on how heterocysts differ from vegetative cells in terms of carbon and energy metabolisms. Microarrays were used to investigate gene transcription patterns in vegetative cells, heterocysts, and filaments of N2-fixing phototrophic, mixotrophic, and heterotrophic cultures.
Project description:Here, we report the transcriptome of Anabaena sp. strain 7120, a cyanobacterium that forms specialized nitrogen-fixing cells called heterocysts. Our data suggests that cyanobacteria frequently have more complex transcripts than thought, with large 5' UTRs, numerous antisense transcripts, and multiple transcriptional start sites or processing sites.
Project description:Cyanobacteria are oxygenic photoautotrophs responsible for a substantial proportion of nitrogen fixation and primary production in the hydrosphere. Non-nitrogen fixing cyanobacteria, such as Synechocystis sp. PCC 6803, depend of the availability of nitrogenized species to survive. Therefore, an intricate regulatory network around the transcriptional factor NtcA maintains the homeostasis of nitrogen in these organisms. The mechanisms controlling NtcA activity are well understood but a comprehensive study of its regulon is missing in Synechocystis. To define NtcA regulon during the early stage of nitrogen starvation, we have performed chromatin immunoprecipitation followed by sequencing (ChiP-seq), in parallel with genome level transcriptome analysis (RNA-seq). By combining both methods we assigned 51 activated and 28 repressed genes directly by NtcA. Most of direct targets included genes involved in nitrogen and carbon metabolism and photosynthesis. NtcA regulon also included 8 ncRNAs, of which ncr0710, Syr6 and NsiR7 were experimentally validated. Intriguingly, we identified several NtcA intragenic binding sites suggesting that NtcA can modulate transcriptional expression by binding along the whole transcript and not only in the promoter region as previously though. Finally, the transcriptional implication of PipX was analyzed in some NtcA-targets genes, revealing that PipX assists NtcA in the global nitrogen regulation in Synechocystis.
Project description:Transcriptional profiling of a unicelluar diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 in constant light under nitrogen fixing condition. The controls comprised of equimolar pool of RNA from all time points.
Project description:Many cyanobacteria can form nitrogen-fixing symbioses with a broad range of plant species. Unlike other plant-bacteria symbioses, little is understood about the immunological responses induced by plant cyanobionts (symbiotic cyanobacteria). Here, we used Arabidopsis thaliana suspension cell cultures as a model system to demonstrate that the model plant-symbiotic cyanobacteria, Nostoc punctiforme is capable of protecting against plant programmed cell death (PCD). We also profiled the early transcriptomic changes that were induced in response to conditioned medium (CM) from N. punctiforme cell cultures. Interestingly, the PCD reduction was preceded by the induction of genes associated with defence and immunity, the most striking of which were a number of WRKY-family transcription factors. Down-regulated included genes involved in the regulation of cell growth and differentiation. This work is the first to show that a cyanobacteria can regulate plant PCD and provides a useful transcriptome resource for studying early plant cell responses to symbiotic cyanobacteria.