Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
Project description:The increasing resistence and/or bacterial tolerance to bactericides, such as chlorhexidine, causes worrisome public health problems. Using transcriptomical and microbiological studies, we analysed the molecular mechanisms associated with the adaptation to chlorhexidine in two carbapenemase-producing strains of Klebsiella pneumoniae belonging ST258-KPC3 and ST846-OXA48.
Project description:UNLABELLED:Carbapenem-resistant Enterobacteriaceae (CRE), especially Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae, pose an urgent threat in health facilities in the United States and worldwide. K. pneumoniae isolates classified as sequence type 258 (ST258) by multilocus sequence typing are largely responsible for the global spread of KPC. A recent comparative genome study revealed that ST258 K. pneumoniae strains are two distinct genetic clades; however, the molecular origin of ST258 largely remains unknown, and our understanding of the evolution of the two genetic clades is incomplete. Here we compared the genetic structures and single-nucleotide polymorphism (SNP) distributions in the core genomes of strains from two ST258 clades and other STs (ST11, ST442, and ST42). We identified an ~1.1-Mbp region on ST258 genomes that is homogeneous to that of ST442, while the rest of the ST258 genome resembles that of ST11. Our results suggest ST258 is a hybrid clone--80% of the genome originated from ST11-like strains and 20% from ST442-like strains. Meanwhile, we sequenced an ST42 strain that carries the same K-antigen-encoding capsule polysaccharide biosynthesis gene (cps) region as ST258 clade I strains. Comparison of the cps-harboring regions between the ST42 and ST258 strains (clades I and II) suggests the ST258 clade I strains evolved from a clade II strain as a result of cps region replacement. Our findings unravel the molecular evolution history of ST258 strains, an important first step toward the development of diagnostic, therapeutic, and vaccine strategies to combat infections caused by multidrug-resistant K. pneumoniae. IMPORTANCE:Recombination events and replacement of chromosomal regions have been documented in various bacteria, and these events have given rise to successful pathogenic clones. Here we used comparative genomic analyses to discover that the ST258 K. pneumoniae genome is a hybrid--80% of the chromosome is homologous to ST11 strains, while the remaining 20% is homologous to that of ST442. Meanwhile, a recent study indicated that ST258 strains can be segregated into two ST258 clades, with distinct capsule polysaccharide gene (cps) regions. Our analysis suggests ST258 clade I strains evolved from clade II through homologous recombination of cps region. Horizontal transfer of the cps region appears to be a key element driving the molecular diversification in K. pneumoniae strains. These findings not only extend our understanding of the molecular evolution of ST258 but are an important step toward the development of effective control and treatment strategies for multidrug-resistant K. pneumoniae.
Project description:Klebsiella pneumoniae is ubiquitous in the environment and is a member of a three-species biofilm model. We compared the genome sequence of an environmental isolate, K. pneumoniae strain KP-1, to those of two clinical strains (NTUH-K2044 and MGH 78578). KP-1 possesses strain-specific prophage sequences that distinguish it from the clinical strains.
Project description:Klebsiella pneumoniae is a member of Enterobacteriaceae that causes a multitude of infections in compromised and healthy individuals. The rise of hypervirulent and multiple-drug-resistant K. pneumoniae strains has made this organism a global health threat. Here, we report the complete genome sequence of K. pneumoniae strain ATCC 43816.
Project description:To investigate the whole-genome gene expression difference between the wild-type and capsule deletion mutant in Klebsiella pneumoniae MGH 78578. The mutants analyzed in this study are further described in Huang T.W., Stapleton J.C., Chang H.Y., Tsai S.F., Palsson B.O., Charusanti P. Capsule removal via lambda-Red knockout system perturbs biofilm formation and fimbriae extression in Klesiella pneumoniae MGH 78578 (manuscript submission) A six chip study using total RNA recovered from three separate wild-type cultures and three separate cultures of a capsule deltion mutant of Klebsiella pneumoniae MGH 78578. The capsule gene cluster (KPN_02493 to KPN_02515) was entirely removed in the capsule deletion mutant. Each chip measures the expression level of 5,305 genes from Klebsiella pneumoniae MGH 78578 and the associated five plasmids (pKPN3, pKPN4, pKPN5, pKPN6 and pKPN7) with 50-mer oligo tiling array with 30-mer spacer.