Project description:Cyanuric acid, a metabolic intermediate in the degradation of many s-triazine compounds, is further metabolized by cyanuric acid hydrolase. Cyanuric acid also accumulates in swimming pools due to the breakdown of the sanitizing agents di- and trichloroisocyanuric acid. Structurally stable cyanuric acid hydrolases are being considered for usage in pool water remediation. In this study, cyanuric acid hydrolase from the thermophile Moorella thermoacetica ATCC 39073 was cloned, expressed in Escherichia coli, and purified to homogeneity. The recombinant enzyme was found to have a broader temperature range and greater stability, at both elevated and low temperatures, than previously described cyanuric acid hydrolases. The enzyme had a narrow substrate specificity, acting only on cyanuric acid and N-methylisocyanuric acid. The M. thermoacetica enzyme did not require metals or other discernible cofactors for activity. Cyanuric acid hydrolase from M. thermoacetica is the most promising enzyme to use for cyanuric acid remediation applications.
Project description:Moorella thermoacetica can grow with H? and CO?, forming acetic acid from 2 CO? via the Wood-Ljungdahl pathway. All enzymes involved in this pathway have been characterized to date, except for methylenetetrahydrofolate reductase (MetF). We report here that the M. thermoacetica gene that putatively encodes this enzyme, metF, is part of a transcription unit also containing the genes hdrCBA, mvhD, and metV. MetF copurified with the other five proteins encoded in the unit in a hexaheteromeric complex with an apparent molecular mass in the 320-kDa range. The 40-fold-enriched preparation contained per mg protein 3.1 nmol flavin adenine dinucleotide (FAD), 3.4 nmol flavin mononucleotide (FMN), and 110 nmol iron, almost as predicted from the primary structure of the six subunits. It catalyzed the reduction of methylenetetrahydrofolate with reduced benzyl viologen but not with NAD(P)H in either the absence or presence of oxidized ferredoxin. It also catalyzed the reversible reduction of benzyl viologen with NADH (diaphorase activity). Heterologous expression of the metF gene in Escherichia coli revealed that the subunit MetF contains one FMN rather than FAD. MetF exhibited 70-fold-higher methylenetetrahydrofolate reductase activity with benzyl viologen when produced together with MetV, which in part shows sequence similarity to MetF. Heterologously produced HdrA contained 2 FADs and had NAD-specific diaphorase activity. Our results suggested that the physiological electron donor for methylenetetrahydrofolate reduction in M. thermoacetica is NADH and that the exergonic reduction of methylenetetrahydrofolate with NADH is coupled via flavin-based electron bifurcation with the endergonic reduction of an electron acceptor, whose identity remains unknown.
Project description:Fermentation of gases provides a promising opportunity for the production of biochemicals from renewable resources, which has resulted in a growing interest in acetogenic bacteria. Thermophilic organisms provide potential advantages for the fermentation of, e.g., syngas into for example volatile compounds, and the thermophiles Moorella thermoacetica and Moorella thermoautotrophica have become model organisms of acetogenic metabolism. The justification for the recognition of the closely related species M. thermoautotrophica has, however, recently been disputed. In order to expand knowledge on the genus, we have here genome sequenced a total of 12 different M. thermoacetica and M. thermoautotrophica strains. From the sequencing results, it became clear that M. thermoautotrophica DSM 1974T consists of at least two different strains. Two different strains were isolated in Lyngby and Ulm from a DSM 1974T culture obtained from the DSMZ (Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Brunswick, Germany). Phylogenetic analysis revealed a close relationship between all the sequenced genomes, suggesting that the two strains detected in the type strain of the species M. thermoautotrophica could not be distinguished at the species level from M. thermoacetica. Despite genetic similarities, differences in genomic features were observed between the strains. Differences in compounds that can serve as carbon and energy sources for selected strains were also identified. On the contrary, strain DSM 21394, currently still named M. thermoacetica, obviously represents a new Moorella species. In addition, based on genome analysis and comparison M. glycerini NMP, M. stamsii DSM 26217T, and M. perchloratireducens An10 cannot be distinguished at the species level. Thus, this comprehensive analysis provides a significantly increased knowledge of the genetic diversity of Moorella strains.