Project description:We use single-cell RNA sequencing to analyze cell composition and DEGs of CD45+ cells from spleen, BM, blood, and colon of WT and Wnt5 DKO mice under DSS treatment
Project description:Single-cell RNA sequencing of CD45 positive cells in spleen, bone marrow, colon and periphral blood from WT and Wnt5 DKO mice under DSS treatment
Project description:Inflammatory bowel disease is characterized by chronic relapsing idiopathic inflammation of the gastrointestinal tract and persistent inflammation. Studies focusing on the immune-regulatory function of reactive oxygen species (ROS) are still largely missing. In this study, we analyzed an ROS-deficient mouse model leading to colon adenocarcinoma. Colitis was induced with dextran sulfate sodium (DSS) supplied via the drinking water in wild-type (WT) and Ncf1-mutant (Ncf1) B10.Q mice using two different protocols, one mimicking recovery after acute colitis and another simulating chronic colitis. Disease progression was monitored by evaluation of clinical parameters, histopathological analysis, and the blood serum metabolome using 1H nuclear magnetic resonance spectroscopy. At each experimental time point, colons and spleens from some mice were removed for histopathological analysis and internal clinical parameters. Clinical scores for weight variation, stool consistency, colorectal bleeding, colon length, and spleen weight were significantly worse for Ncf1 than for WT mice. Ncf1 mice with only a 7-day exposure to DSS followed by a 14-day resting period developed colonic distal high-grade dysplasia in contrast to the low-grade dysplasia found in the colon of WT mice. After a 21-day resting period, there was still β-catenin-rich inflammatory infiltration in the Ncf1 mice together with high-grade dysplasia and invasive well-differentiated adenocarcinoma, while in the WT mice, high-grade dysplasia was prominent without malignant invasion and only low inflammation. Although exposure to DSS generated less severe histopathological changes in the WT group, the blood serum metabolome revealed an increased fatty acid content with moderate-to-strong correlations to inflammation score, weight variation, colon length, and spleen weight. Ncf1 mice also displayed a similar pattern but with lower coefficients and showed consistently lower glucose and/or higher lactate levels which correlated with inflammation score, weight variation, and spleen weight. In our novel, DSS-induced colitis animal model, the lack of an oxidative burst ROS was sufficient to develop adenocarcinoma, and display altered blood plasma metabolic and lipid profiles. Thus, oxidative burst seems to be necessary to prevent evolution toward cancer and may confer a protective role in a ROS-mediated self-control mechanism.
Project description:Purpose: The goals of this study are to confirm the hypothesis that E4BP4 regulates colon specific anti-inflammatory macrophage. Methods: We generated transgenic mice (TG) with macrophage-specific E4BP4 overexpression. CD45+ cells in colon lamina propria were isolated at Zeitgeber Time (ZT) 0 from TG mice and WT littermates during the recovery period of dextran sulfate sodium (DSS)-induced colitis, and total RNA was extracted. CD45+ cells in colon lamina propria RNA profiles were generated by deep sequencing for two groups with one mouse sample each. Results: There were significant differences between TG and WT mice. Conclusions: E4BP4 increased the number of M2 macrophage population and upregulated anti-inflammatory genes.
Project description:Mice were treated with DSS and anti-PD1 to induce colitis, comparable to patients suffering from ICI-induced immune-related adverse events. ECP showed beneficial effects in patients. Mice were transplanted with ECP-tretaed cells as treatment and scSeq was performed with Colon infiltrating CD45 positive cells.
Project description:CD4+CD25+ cells were sorted from the spleen of 6-7 week old mice WT, Ikzf4-/- and dKO mice (group 1) were processed separately from a a second group (group2) containing Ikzf2-/- and their WT controls. Group 1 originates from an ultra clean sterile bioBubble, while group 2 originates from a specific pathogne free facility. In each group 3 samples were analyzed for each genotype.
Project description:We identify a new cell subset Ter119+CD45- small cells that promotes tumor metastasis in hepatocellular carcinoma (HCC)-bearing mice. We used microarrays to detail the gene expression of Ter119+CD45- cells comparing with CD45- cells in the spleen of hepatocellular carcinoma (HCC)-bearing mice. Ter119+CD45- cells in the spleen of hepatocellular carcinoma (HCC)-bearing mice, being sorted by a MoFlo high-speed cell sorter, were prepared for RNA extraction and hybridization on Affymetrix microarrays. The CD45+ cells from the same tumor bearing mice were prepared as control.
Project description:BACKGROUND: Peroxisome proliferator-activated receptor g (PPAR g) is a nuclear receptor whose activation has been shown to modulate macrophage and epithelial cell-mediated inflammation. The objective of this study was to use a systems approach for investigating the mechanism by which the deletion of PPAR g in T cells modulates the severity of dextran-sodium sulfate (DSS)-induced colitis, immune cell distribution and global gene expression. METHODS: Wild-type (WT) or PPAR g flfl; CD4 Cre+ (CD4cre) mice in a C57BL/6 background were challenged with 2.5% DSS in their drinking water for 0, 2, or 7 days. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to assess lymphocyte and macrophage populations in the blood, spleen, and mesenteric lymph nodes (MLN). Global gene expression in colonic mucosa was profiled using Affymetrix microarrays. RESULTS: Both disease severity and inflammation-related body weight loss were accelerated by the deficiency of PPAR g in T cells. Examination of colon histopathology revealed significantly greater epithelial erosion, leukocyte infiltration, and mucosal thickening in the CD4cre mice on day 7. CD4cre mice had more CD8+ T cells than wt mice and fewer CD4+FoxP3+ regulatory T cells (Treg) and IL10+CD4+ T cells in blood and MLN, respectively. Transcriptomic profiling revealed around 3000 genes being transcriptionally altered as a result of DSS challenge in CD4cre mice. These included up-regulated adhesion molecules on day 7 and proinflammatory cytokines interleukin-6 (IL-6) and IL-1b, and suppressor of cytokine signaling 3 (SOCS-3) mRNA expression. CONCLUSIONS: These findings suggest that T cell PPAR g down-regulates inflammation during DSS colitis by inhibiting colonic expression of inflammatory mediators and increasing MLN Treg. Colonic mucosa from wt and CD4cre mice were sampled at 0 (no DSS), 2, and 7 days of DSS-induced experimental colitis
Project description:Pglyrp1-/-, Pglyrp2-/-, Pglyrp3-/-, and Pglyrp4-/- mice are all more sensitive than wild type (WT) mice to dextran sulfate sodium (DSS)-induced colitis. The purpose of this study was to determine which genes are differentially induced by DSS treatment in the colon of Pglyrp1-/-, Pglyrp2-/-, Pglyrp3-/-, and Pglyrp4-/- mice compared to WT mice. The results demonstrate higher induction of proinflammatory gene expression in Pglyrp1-/-, Pglyrp2-/-, Pglyrp3-/-, and Pglyrp4-/- mice than in WT mice after DSS treatment. The majority of genes whose expression is increased in Pglyrp1-/-, Pglyrp2-/-, Pglyrp3-/-, and Pglyrp4-/- mice but not in WT mice are interferon-inducible genes. Thus, Peptidoglycan Recognition Proteins Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4 protect mice from excessive inflammatory response and damage to the colon by limiting expression of interferon-inducible genes in the colon.