Project description:Investigate the effect of recombinant human IL-17A on vascular smooth muscle cells cultured from human aortas. Experiment Overall Design: SMCs from the aortas of three different donors were cultured in M199 media supplemented with 20% FCS and used at passage 3. The cells were either not treated or treated with IL-17 at 100 ng/ml for 6 hr. The six samples were labeled as Untreated or IL-17-treated from three independent experiments labeled A, B, and C.
Project description:Investigate the effect of recombinant human IL-17A on vascular smooth muscle cells cultured from human aortas. Keywords: Dose response
Project description:The etiology of post-inflammatory gastrointestinal (GI) motility dysfunction, after resolution of acute symptoms of inflammatory bowel diseases (IBD) and intestinal infection, is largely unknown. Here, using an established mouse model of experimental enteritis, we show that enhancement of smooth muscle cell (SMC) contraction by interleukin (IL)-17A may be involved in postinflammatory GI hypermotility. To examine the effect of IL-17 in the small intestinal smooth muscle, we used whole genome microarray expression profiling to find out the genes which respond to IL-17 stimulus. The smooth muscle strips were peeled off from mouse small intestine and incubated 24h with or without IL-17. And we also examined the effect of 6-shogaol, which is one of the ingredients of Japanese traditional medicine for intestinal mortor disorder, Daikenchuto, in IL-17 stimulated small intestinal smooth muscle strip. The smooth muscle strips were peeled off from mice small intestine and incubated in the culture media for 24h with or without IL-17. A part of IL-17 stimulated strips were co-incubated with 6-shogaol. Six independent experiments were performed.
Project description:The etiology of post-inflammatory gastrointestinal (GI) motility dysfunction, after resolution of acute symptoms of inflammatory bowel diseases (IBD) and intestinal infection, is largely unknown. Here, using an established mouse model of experimental enteritis, we show that enhancement of smooth muscle cell (SMC) contraction by interleukin (IL)-17A may be involved in postinflammatory GI hypermotility. To examine the effect of IL-17 in the small intestinal smooth muscle, we used whole genome microarray expression profiling to find out the genes which respond to IL-17 stimulus. The smooth muscle strips were peeled off from mouse small intestine and incubated 24h with or without IL-17. And we also examined the effect of 6-shogaol, which is one of the ingredients of Japanese traditional medicine for intestinal mortor disorder, Daikenchuto, in IL-17 stimulated small intestinal smooth muscle strip.
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Platelet-derived growth factor (PDGF) signalling and the subsequent activation of the calcium ion channel, ORAI1 are critical drivers of pathological remodelling of native vascular smooth muscle cells to proliferative state, which is a process associated with various vascular diseases. This study aims to reveal transcriptional networks altered following ORAI1 inhibition in vascular smooth muscle cells. To study the effect of ORAI1 inhibition on VSMC biology, we performed RNA-Seq analysis of PDGF-stimulated primary human aortic smooth muscle cells treated with either ORAI1 inhibitor, (n=4) or with vehicle (n=4), and investigated the effect of ORAI1 inhibition on the transcriptional response of cells.