Project description:GacS/GacA is a widely distributed two-component system playing an essential role as a key global regulator, although its characterization in phytopathogenic bacteria has been deeply biased, being intensively studied in pathogens of herbaceous plants but barely investigated in pathogens of woody hosts. P. savastanoi pv. savastanoi (Psv) is characterized by inducing tumours in the stem and branches of olive trees. In this work, the model strain Psv NCPPB 3335 and a mutant derivative with a complete deletion of gene gacA were subjected to RNA-Seq analyses in a minimum medium and a medium mimicking in planta conditions, accompanied by RT-qPCR analyses of selected genes and phenotypic assays. These experiments indicated that GacA participates in the regulation of at least 2152 genes in strain NCPPB 3335, representing 37.9 % of the annotated CDSs. GacA also controls the expression of diverse rsm genes, and modulates diverse phenotypes, including motility and resistance to oxidative stresses. As occurs with other P. syringae pathovars of herbaceous plants, GacA regulates the expression of the type III secretion system and cognate effectors. In addition, GacA also regulates the expression of WHOP genes, specifically encoded in P. syringe strains isolated from woody hosts, and genes for the biosynthesis of phytohormones. A gacA mutant of NCPPB 3335 showed increased virulence, producing large immature tumours with high bacterial populations, but showed a significantly reduced competitiveness in planta. Our results further extend the role of the global regulator GacA in the virulence and fitness of a P. syringae pathogen of woody hosts.
Project description:The GacS/GacA signal transduction system is a central regulator in Pseudomonas spp., including the biological control strain P. fluorescens Pf-5, in which GacS/GacA controls the production of secondary metabolites and exoenzymes that suppress plant pathogens. A whole genome oligonucleotide microarray was developed for Pf-5 and used to assess the global transcriptomic consequences of a gacA mutation in P. fluorescens Pf-5. In cultures at the transition from exponential to stationary growth phase, GacA significantly influenced transcript levels of 632 genes, representing more than 10% of the 6147 annotated genes in the Pf-5 genome. Transcripts of genes involved in the production of hydrogen cyanide, the antibiotic pyoluteorin, and the extracellular protease AprA were at a low level in the gacA mutant, whereas those functioning in siderophore production and other aspects of iron homeostasis were significantly higher in the gacA mutant than in wild-type Pf-5. Notable effects of gacA inactivation were also observed in the transcription of genes encoding components of a type VI secretion system and cytochrome C oxidase subunits. Two novel gene clusters expressed under the control of gacA were identified from transcriptome analysis, and we propose global-regulator-based genome mining as an approach to decipher the secondary metabolome of Pseudomonas spp.
Project description:Transcriptomic profiling of a gacA mutant of Pseudomonas protegens Pf-5 in comparison to the wild-type Pf-5 strain grown on pea seed surfaces for 24h.
Project description:Pseudomonas syringae pv. phaseolicola is the causal agent of halo blight disease of beans (Phaseolus vulgaris L.), which is characterized by water-soaked lesions surrounded by a chlorotic halo resulting from the action of a non-host-specific toxin known as phaseolotoxin, that inhibits the enzyme ornithine carbamoyltransferase involved in the arginine biosynthesis pathway. It was previously reported that genes within the Pht cluster were involved in the regulation and synthesis of phaseolotoxin. The GacS/GacA two component signal transduction system controls important pathogenicity and virulence mechanisms in several Gram-negative bacteria. In the present study we hybridized a genomic microarray of P. syringae pv. phaseolicola NPS3121 to compare transcriptional profiles from wild type strain and a gacA- null mutant with a Tox- 11 phenotype. Results show that GacA controls expression of genes within the Pht cluster as well as another group of clustered genes located in a 13 different region in the bacterial chromosome that contains at least one gene unambiguously shown to be directly involved in phaseolotoxin biosynthesis. Results suggest that this cluster is a new pathogenicity island containing genes whose regulation is also under GacA regulatory cascade and it will require further investigation to determine gene functions and their relationship to virulence mechanisms Transcriptional profiles of a P. syringae pv. phaseolicola NPS3121 null gacA mutant were compared to those of the wild-type strain. Cultures were grown in minimal medium at 18°C (which is the temperature at which phaseolotoxin is produced and the bacteria achieves full virulence) and harvested during the late log phase of the exponential growth. RNA from three biological replicates and each with two technical replicates were hybridize to control variation that might affect data interpretation.
Project description:Pseudomonas syringae pv. phaseolicola is the causal agent of halo blight disease of beans (Phaseolus vulgaris L.), which is characterized by water-soaked lesions surrounded by a chlorotic halo resulting from the action of a non-host-specific toxin known as phaseolotoxin, that inhibits the enzyme ornithine carbamoyltransferase involved in the arginine biosynthesis pathway. It was previously reported that genes within the Pht cluster were involved in the regulation and synthesis of phaseolotoxin. The GacS/GacA two component signal transduction system controls important pathogenicity and virulence mechanisms in several Gram-negative bacteria. In the present study we hybridized a genomic microarray of P. syringae pv. phaseolicola NPS3121 to compare transcriptional profiles from wild type strain and a gacA- null mutant with a Tox- 11 phenotype. Results show that GacA controls expression of genes within the Pht cluster as well as another group of clustered genes located in a 13 different region in the bacterial chromosome that contains at least one gene unambiguously shown to be directly involved in phaseolotoxin biosynthesis. Results suggest that this cluster is a new pathogenicity island containing genes whose regulation is also under GacA regulatory cascade and it will require further investigation to determine gene functions and their relationship to virulence mechanisms
Project description:The GacS/GacA signal transduction system is a central regulator in Pseudomonas spp., including the biological control strain P. fluorescens Pf-5, in which GacS/GacA controls the production of secondary metabolites and exoenzymes that suppress plant pathogens. A whole genome oligonucleotide microarray was developed for Pf-5 and used to assess the global transcriptomic consequences of a gacA mutation in P. fluorescens Pf-5. In cultures at the transition from exponential to stationary growth phase, GacA significantly influenced transcript levels of 632 genes, representing more than 10% of the 6147 annotated genes in the Pf-5 genome. Transcripts of genes involved in the production of hydrogen cyanide, the antibiotic pyoluteorin, and the extracellular protease AprA were at a low level in the gacA mutant, whereas those functioning in siderophore production and other aspects of iron homeostasis were significantly higher in the gacA mutant than in wild-type Pf-5. Notable effects of gacA inactivation were also observed in the transcription of genes encoding components of a type VI secretion system and cytochrome C oxidase subunits. Two novel gene clusters expressed under the control of gacA were identified from transcriptome analysis, and we propose global-regulator-based genome mining as an approach to decipher the secondary metabolome of Pseudomonas spp. In this series two conditions have been analyzed. A gacA mutant of Pseudomonas fluorescens Pf-5 was harvested at early (OD 0.5) and late (OD 2.4) time points and compared to wild-type Pf-5 harvested in parallel. For each slide, an experimental RNA sample from a gacA mutant was labeled with Cy3 or Cy5 and was hybridized with a reference RNA sample from wild-type Pf-5 labeled with the other Cy dye. There are six slides per condition. Each condition is represented by three biological replicates. There are two flip-dye replicates for each biological replicate. Each slide contains three replicate spots per gene.