Project description:Little is understood about how the two major types of heterochromatin domains (HP1 and Polycomb) are kept separate. In the yeast Cryptococcus neoformans, the Polycomb-like protein Ccc1 prevents deposition of H3K27me3 at HP1 domains. Here we show that phase separation propensity underpins Ccc1 function. Mutations of the two basic clusters in the intrinsically disordered region or deletion of the coiled-coil dimerization domain alter phase separation behavior of Ccc1 in vitro and have commensurate impacts on formation of Ccc1 condensates in vivo, which are enriched for PRC2. Importantly, mutations that alter phase separation trigger ectopic H3K27me3 at HP1 domains. Supporting a direct condensate-driven mechanism for fidelity, Ccc1 droplets efficiently concentrate recombinant C. neoformans PRC2 in vitro while HP1 droplets do so only weakly. These studies establish a biochemical basis for chromatin regulation in which mesoscale biophysical properties play a key functional role.
Project description:Polycomb group proteins play a critical role in silencing transcription during development. It is commonly proposed that Polycomb dependent changes in genome folding, which compact chromatin, contribute directly to repression by blocking binding of activating complexes. Recently, it has also been argued that liquid-liquid demixing of Polycomb proteins facilitates this compaction and repression by phase-separating target genes into a membraneless compartment. To test these models, we utilized Optical Reconstruction of Chromatin Architecture (ORCA) to trace the Hoxa gene cluster, a canonical Polycomb target, in thousands of single cells. Across multiple cell types, we find that Polycomb-bound chromatin frequently explores decompact states and partial mixing with neighboring chromatin, while remaining uniformly repressed, challenging the repression-by-compaction or phase-separation models. Using polymer simulations, we show that these observed flexible ensembles can be explained by “spatial feedback”: transient contacts that contribute to propagation of the epigenetic state, (epigenetic memory) without inducing a globular organization.
Project description:Although Kdm1a is the most expressed histone demethylase in neurons, its molecular function in the adult brain remains unknown. Here, we found that inducible and forebrain-restricted knockout (ifKO) mice, in which Kdm1a is specifically eliminated in forebrain excitatory neurons during adulthood, display a prominent transcriptional and epigenomic dysregulation signature characterized by the neuronal expression of nonneuronal genes. The combination of super-resolution microscopy images and multi-omic analysis integrating transcriptome, epigenome and chromatin conformation data showed that these genes are target of the polycomb repressor complex 2 (PRC2) and locate in H3K27me3-microdomains encapsulated within the euchromatin compartment. Furthermore, functional assays revealed that both the catalytic activity and the N-terminus intrinsically disordered region of Kdm1a, which provides phase separation properties, are needed to maintain the boundaries between these silent micro-domains and the active chromatin environment. As a result, Kdm1a loss led to the spreading of active histone modifications into the PRC2-repressed genes causing their de-repression. Intriguingly, the investigation of aged mice suggested that these boundaries may also weaken during natural aging. Overall, these results underscore the role of Kdm1a safeguarding chromatin compartmentalization, nuclear phase separation and gene silencing in the adult and aging brain.
Project description:The interplay between multiple transcription factors precisely regulates eukaryotic transcription. Here, we report that the protein methyltransferases, MLL2 and PRMT1, interact directly and act collectively to regulate gene expression. PRMT1 binds to the N-terminal region of MLL2, considered an intrinsically disordered region, and methylates multiple arginine residues within its RGG/RG motifs. Notably, overexpression of PRMT1 decreased poly-ubiquitylation of MLL2, whereas mutations on methylation sites in MLL2 increased MLL2 poly-ubiquitylation, suggesting that PRMT1-mediated methylation stabilizes MLL2. MLL2 and PRMT1 cooperatively stimulated the expression of a chromosomal reporter gene in a PRMT1-mediated, MLL2-methylation–dependent manner. RNA-seq analysis found that MLL2 and PRMT1 jointly regulate the expression of genes involved in cell membrane and extracellular matrix functions, and depletion of either resulted in impaired cell migration and invasion. Our study provides evidence that PRMT1-mediated MLL2 methylation regulates MLL2 protein stability and the expression of their target genes.
Project description:Transcription factors are among the most attractive therapeutic targets but are considered largely undruggable. Here we provide evidence that small molecule-mediated partitioning of the androgen receptor, an oncogenic transcription factor, into phase-separated condensates has therapeutic effect in prostate cancer. We show that the phase separation capacity of the androgen receptor is driven by aromatic residues and short unstable helices in its intrinsically disordered activation domain. Based on this knowledge, we developed tool compounds that covalently attach aromatic moieties to cysteines in the receptors’ activation domain. The compounds enhanced partitioning of the receptor into condensates, facilitated degradation of the receptor, inhibited androgen receptor-dependent transcriptional programs, and had antitumorigenic effect in mouse models of prostate cancer and castration resistant prostate cancer. These results establish a generalizable framework to target the phase-separation capacity of intrinsically disordered regions in oncogenic transcription factors and other disease-associated proteins with therapeutic intent.
Project description:Transcription factors are among the most attractive therapeutic targets but are considered largely undruggable. Here we provide evidence that small molecule-mediated partitioning of the androgen receptor, an oncogenic transcription factor, into phase-separated condensates has therapeutic effect in prostate cancer. We show that the phase separation capacity of the androgen receptor is driven by aromatic residues and short unstable helices in its intrinsically disordered activation domain. Based on this knowledge, we developed tool compounds that covalently attach aromatic moieties to cysteines in the receptors’ activation domain. The compounds enhanced partitioning of the receptor into condensates, facilitated degradation of the receptor, inhibited androgen receptor-dependent transcriptional programs, and had antitumorigenic effect in mouse models of prostate cancer and castration resistant prostate cancer. These results establish a generalizable framework to target the phase-separation capacity of intrinsically disordered regions in oncogenic transcription factors and other disease-associated proteins with therapeutic intent.
Project description:Components of the transcription machinery can undergo liquid-liquid phase separation, but the functional importance of phase-separated condensates in transcriptional control is not well understood. Here we report that disease-causing mutations in several transcription factors (TFs) alter the phase separation capacity of those TFs. We first demonstrate that the Hoxd13 TF, and its intrinsically disordered N-terminus form phase-separated condensates. Expansions of a polyalanine repeat, which cause hereditary synpolydactyly in humans, facilitate phase separation of Hoxd13, and alter the transcriptional program of several cell types in a cell-specific manner in vivo. Disease-associated expansions of aminoacid repeats in intrinsically disordered regions of other TFs were similarly found to alter phase separation. These results suggest that aberrant phase separation of transcriptional regulators may underlie a spectrum of human pathologies. The paper is available at https://doi.org/10.1016/j.cell.2020.04.018