Project description:Identifying the differentially expressed genes of Riemerella anatipestifer CH-1 and CH-1_zntR under normal condition through RNA sequencing.
2025-01-18 | GSE286539 | GEO
Project description:Transcriptome sequencing of Riemerella anatipestifer CH-1 and CH-1_mntR under TSB condition
| PRJNA909940 | ENA
Project description:Transcriptome sequencing of Riemerella anatipestifer CH-1 and CH-1_zntR under TSB condition
Project description:We performed comparative transcriptomic analysis of the outer membrane vesicles (OMVs) released from B. burgdorferi. We identified a total of ~1200 unique transcripts with at least one mapped read from the bacterial cell and its OMVs.
Project description:Infectious serositis of ducks caused by Riemerella anatipestifer infection has brought great losses to poultry industry all over the world. Adhesion and invasion were important pathway of the infection of Riemerella anatipestifer. Gram-negative pathogens’ adhesion and invasion of host cells by means of outer membrane proteins was a common phenomenon. Here, by using LC-MS/MS, we determined the adhesins belonging to the outer membrane protein of Riemerella anatipestifer RA-YM strain.
2024-10-27 | PXD057236 |
Project description:Transcriptome sequencing of Riemerella anatipestifer CH-1 under iron-repleted condition and iron-depleted condition
Project description:Riemerella anatipestifer can cause infectious serositis in ducklings with high mortality. As a bacterial adhesin receptor, membrane cofactor CD46 plays a role in the process of bacterial adhesion to the host. Outer membrane protein (OMP) is necessary for Gram-negative bacteria to adhere, colonize and cause diseases. Therefore, we used duck CD46 protein (dCD46) as bait protein, and screened out the OMPs of Riemerella anatipestifer which can interact with dCD46 by pull-down test, and searched for the adhesion protein of Riemerella anatipestifer, which laid a foundation for the prevention of Riemerella anatipestifer.
Project description:Helicobacter pylori, a bacterium that colonizes the human stomach, like all Gram-negative bacteria spontaneously shed outer membrane vesicles (OMVs). OMVs, which act as a delivery system for bacterial components, are involved in bacterial-host interactions and thus contribute to pathogenesis. In this study, to understand the gene expression changes that human gastric epithelial cells might undergo when exposed to H. pylori-OMVs, we profiled the transcriptomic changes of the MKN74 gastric cell line induced by OMVs compared to control cells and H. pylori-infected cells, using the Ion AmpliSeq™ Transcriptome Human Gene Expression Panel. The top enriched pathways in the OMVs challenge condition included amino acid-related metabolic pathways, mitogen-activated protein kinase signaling, autophagy, and ferroptosis. The cell cycle, DNA replication, and repair pathways were the top diminished pathways. The transcriptomic changes induced by OMVs were largely consistent with those of the bacteria, although often at low expression levels, suggesting that their effects will mostly reinforce those of the bacterium itself. Our data provide a valuable portrayal of the transcriptomic remodeling of gastric cells by H. pylori-OMVs, which can be further dissected regarding the underlying molecular mediators and explored to understand the pathobiology of the full-spectrum of H. pylori-mediated diseases.
Project description:Asthma is the most common chronic respiratory disease. Asthma that cannot be well controlled by steroid treatment is called steroid-resistant asthma. Steroid-resistant asthma accounts for only 5% of all asthma cases, but it accounts for 80% of asthma healthcare costs. Nontypeable Haemophilus influenzae (NTHi), as a Gram-negative bacterium, can release outer membrane vesicles (OMVs) and transfer biomolecules to host cells and the external environment by carrying lipopolysaccharides, proteins, peptidoglycans, outer membrane proteins, cell wall components, proteins, nucleic acids, ion metabolites, and signaling molecules. Thus, it plays a role in obtaining nutrition, stress, toxin delivery, adhesion, host immune surveillance evasion, and host immune response regulation. It becomes an essential way in bacterial pathogenesis. To further clarify whether NTHi OMVs could be inhaled to induce steroid-resistant asthma, we isolated and purified NTHi OMVs. In vivo experiments showed that NTHi OMVs could be inhaled and enter airway epithelial cells. Cosensitization with OVA induces steroid-resistant asthma in mice. Furthermore, through high-throughput sequencing, we found that the NTHi OMVs and OVA co-sensitized mice had significantly enriched inflammatory and immune-related signaling pathways, and the transcription and secretion of IL-1β were increased was the potential cause of SRA.
Project description:The outer membrane vesicles (OMVs) produced by Porphyromonas gingivalis (P. gingivalis) contain a variety of bioactive molecules that may be involved in the progression of periodontitis. However, the participation of P. gingivalis OMVs in the development of periodontitis has not been elucidated. Here we isolated P. gingivalis OMVs and confirmed their participation in periodontitis both in vivo and in vitro. Microcomputed Tomography (micro-CT) and histological analysis showed that under the stimulation of P. gingivalis OMVs, the alveolar bone of rats was significantly resorbed in vivo. We found that P. gingivalis OMVs were taken up by hPDLCs (human Periodontal Ligament Cells, hPDLCs) in vitro, then subsequently resulting in apoptosis and inflammatory cytokines releasing which was accomplished by the microRNA-size small RNAs (msRNAs) sRNA45033 in the P. gingivalis OMVs. Through bioinformatics analysis and screening of target genes, Chromobox 5 (CBX5) was identified as the downstream target of screened-out small RNA s45033. Using dual-luciferase reporter assay, overexpression, and knockdown methods, s45033 was confirmed to target CBX5 to regulate hPDLCs apoptosis. In addition, Cleavage Under Targets and Tagmentation (Cut&Tag) analysis confirmed the mechanism that CBX5 regulates apoptosis through the methylation of p53 DNA. Collectively, these findings indicate that the role of P. gingivalis OMVs is immunologically relevant and related to bacterial virulence in the development of periodontitis.