Project description:To further reveal the major cell types of developing pIVC embryos and underlying epigenetic dynamics, the optimized single-cell based multi-omics sequencing method scChaRM-seq was performed (Yan et al., 2021b). 1,862 single cells Bisulfite-seq datasets were further analyzed. We then performed multi-omics profiling analysis using data obtained from9 pIVC embryos at 8 sequential developmental stages.
Project description:To uncover the role of opioid induced dysbiosis in disrupting intestinal homeostasis, we conducted a multi-omics analysis with gut microbial, metabolite and intestinal transcriptomics data
Project description:To uncover the role of opioid induced dysbiosis in disrupting intestinal homeostasis, we conducted a multi-omics analysis with gut microbial, metabolite and intestinal transcriptomics data
Project description:To further reveal the major cell types of developing pIVC embryos and underlying epigenetic dynamics, the optimized single-cell based multi-omics sequencing method scChaRM-seq was performed (Yan et al., 2021b). After stringent filtration, 3,682 single cells RNA-seq datasets were further analyzed We then performed multi-omics profiling analysis using data obtained from9 pIVC embryos at 8 sequential developmental stages.
Project description:In mammals, circadian rhythms are entrained to the light cycle and drive daily oscillations in levels of NAD+ a co-substrate of the class III histone deacetylase SIRT1 that associates with clock transcription factors. While NAD+ also participates in redox reactions, the extent to which NAD(H) couples nutrient state with circadian transcriptional cycles remains unknown. Here we show that nocturnal animals subjected to time-restricted feeding of a calorie-restricted diet (TRF-CR) only during nighttime display reduced body temperature and elevated hepatic NADH during daytime. Genetic uncoupling of nutrient state from NADH redox state through transduction of the water-forming NADH oxidase from Lactobacillus brevis (LbNOX) increases daytime body temperature and blood and liver acyl-carnitines. LbNOX expression in TRF-CR mice induces oxidative gene networks controlled by BMAL1 and PPARa and suppresses amino acid catabolic pathways. Enzymatic analyses reveal that NADH inhibits SIRT1 in vitro, corresponding with reduced deacetylation of SIRT1 substrates during TRF-CR in vivo. Remarkably, Sirt1 liver nullizygous animals subjected to TRF-CR display persistent hypothermia even when NADH is oxidized by LbNOX. Our findings reveal that the hepatic NADH cycle links nutrient state to whole-body energetics through the rhythmic regulation of SIRT1.
Project description:The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) disorders. Determining its mechanistic role in disease pathogenesis has been difficult due to the apparent disconnect between animal and human studies and a lack of an integrated multi-omics view in the context of disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut microbiome, metabolome, host epigenome and transcriptome in the context of irritable bowel syndrome (IBS) host physiology. We identified IBS subtype-specific and symptom-related variation in microbial composition and function. A subset of identified changes in microbial metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway in IBS with translational potential. Our study highlights the importance of longitudinal sampling and integrating complementary multi-omics data to identify functional mechanisms that can serve as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases.
Project description:Here we map the molecular response of a synthetic community of 32 human gut bacteria to three non-antibiotic drugs by using five omics layers, namely 16S rRNA gene profiling, metagenomics, metatranscriptomics, metaproteomics, and metabolomics. Using this controlled setting, we find that all omics methods with species resolution in their readouts are highly consistent in estimating relative species abundances across conditions. Furthermore, different omics methods can be complementary in their ability to capture functional changes in response to the drug perturbations. For example, while nearly all omics data types captured that the antipsychotic drug chlorpromazine selectively inhibits Bacteroidota representatives in the community, the metatranscriptome and metaproteome suggested that the drug induces stress responses related to protein quality control and metabolomics revealed a decrease in polysaccharide uptake, likely caused by Bacteroidota depletion. Taken together, our study provides insights into how multi-omics datasets can be utilised to reveal complex molecular responses to external perturbations in microbial communities.
Project description:In these experiments, we aimed to investigate the role of cardiomyocyte-specific deletion of the G-quadruplex resolvase Dhx36 in heart development and cardiomyocyte differentiation. To achieve this, we conducted multi-omics analysis using single-nuclei RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) on hearts from postnatal day 7 (PD7) wild-type (WT) and Dhx36 conditional knockout (cKO) mice. Our findings reveal that Dhx36 plays a critical role in the development of the cardiac conduction system (CCS) and in the differentiation of both CCS and working cardiomyocytes
Project description:In these experiments, we aimed to investigate the role of cardiomyocyte-specific deletion of the G-quadruplex resolvase Dhx36 in heart development and cardiomyocyte differentiation. To achieve this, we conducted multi-omics analysis using single-nuclei RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) on hearts from postnatal day 7 (PD7) wild-type (WT) and Dhx36 conditional knockout (cKO) mice. Our findings reveal that Dhx36 plays a critical role in the development of the cardiac conduction system (CCS) and in the differentiation of both CCS and working cardiomyocytes