Project description:We developed and report on a novel new technique to reprogramm fobroblasts from two non-permissive mouse backgrounds into emrbyonic stem cell-like induced pluripotent stem cells
Project description:Comparison of the transcription of palmitoylcarnitine induced pluripotent stem cells, normal induced pluripotent stem cells and embryonic stem cells through RNA-seq
Project description:Lipid metabolism is recognized as a key process for stem cell maintenance and differentiation but genetic factors that instruct stem cell function by influencing lipid metabolism remain to be delineated. Here we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout embryonic stem cells (ESCs) exhibit differentiation failure and knockdown of the planarian orthologue, Smed-exoc3, abrogates in vivo differentiation of somatic stem cells, tissue homeostasis, and regeneration. Tnfaip2 deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of Vimentin (Vim) – a known inducer of LD formation. Knockdown of Vim and Tnfaip2 act epistatically in enhancing cellular reprogramming of mouse fibroblasts. Similarly, planarians devoid of Smed-exoc3 displayed acute loss of TAGs. Supplementation of palmitic acid (PA) and palmitoyl-L-carnitine (a mitochondrial carrier of PA) restores the differentiation capacity of Tnfaip2 deficient ESCs as well as stem cell differentiation and organ maintenance in Smed-exoc3-depleted planarians. Together, these results identify a novel pathway, which is essential for stem cell differentiation and organ maintenance by instructing lipid metabolism.
Project description:Lipid metabolism is recognized as a key process for stem cell maintenance and differentiation but genetic factors that instruct stem cell function by influencing lipid metabolism remain to be delineated. Here we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout embryonic stem cells (ESCs) exhibit differentiation failure and knockdown of the planarian orthologue, Smed-exoc3, abrogates in vivo differentiation of somatic stem cells, tissue homeostasis, and regeneration. Tnfaip2 deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of Vimentin (Vim) – a known inducer of LD formation. Knockdown of Vim and Tnfaip2 act epistatically in enhancing cellular reprogramming of mouse fibroblasts. Similarly, planarians devoid of Smed-exoc3 displayed acute loss of TAGs. Supplementation of palmitic acid (PA) and palmitoyl-L-carnitine (a mitochondrial carrier of PA) restores the differentiation capacity of Tnfaip2 deficient ESCs as well as stem cell differentiation and organ maintenance in Smed-exoc3-depleted planarians. Together, these results identify a novel pathway, which is essential for stem cell differentiation and organ maintenance by instructing lipid metabolism.