Project description:Primary human bronchial epithelial cells were transfected with siRNA to knockdown IRF7 gene expression, allowed to recover, and then infected with human rhinovirus. At 24 hrs post rhinovirus infection, gene expression patterns were profiled on microarrays.
Project description:RATIONALE: Human rhinovirus infections cause colds and trigger exacerbations of lower airway diseases. OBJECTIVES: To define changes in gene expression profiles during in vivo rhinovirus infections. METHODS: Nasal epithelial scrapings were obtained before and during experimental rhinovirus infection, and gene expression was evaluated by microarray. Naturally acquired rhinovirus infections, cultured human epithelial cells, and short interfering RNA knockdown were used to further evaluate the role of viperin in rhinovirus infections. MEASUREMENTS AND MAIN RESULTS: Symptom scores and viral titers were measured in subjects inoculated with rhinovirus or sham control, and changes in gene expression were assessed 8 and 48 hours after inoculation. Real-time reverse transcription-polymerase chain reaction for viperin and rhinoviruses was used in naturally acquired infections, and viperin mRNA levels and viral titers were measured in cultured cells. Rhinovirus-induced changes in gene expression were not observed 8 hours after viral infection, but 11,887 gene transcripts were significantly altered in scrapings obtained 2 days postinoculation. Major groups of up-regulated genes included chemokines, signaling molecules, interferon-responsive genes, and antivirals. Viperin expression was further examined and also was increased in naturally acquired rhinovirus infections, as well as in cultured human epithelial cells infected with intact, but not replication-deficient, rhinovirus. Knockdown of viperin with short interfering RNA increased rhinovirus replication in infected epithelial cells. CONCLUSIONS: Rhinovirus infection significantly alters the expression of many genes associated with the immune response, including chemokines and antivirals. The data obtained provide insights into the host response to rhinovirus infection and identify potential novel targets for further evaluation.
Project description:Primary human bronchial epithelial cells were transfected with siRNA to knockdown IRF7 gene expression, allowed to recover, and then infected with human rhinovirus. At 24 hrs post rhinovirus infection, gene expression patterns were profiled on microarrays. The study design consisted of five donors, two transfection conditions (all-star negtaive control siRNA; IRF7-specific siRNA), and two culture conditions (medium control, rhinovirus-16).
Project description:Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Despite modest advances in the diagnosis and treatment of infections by these viruses, novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. From these data, we constructed a transcriptional regulatory network model that revealed shared and unique host responses to these viral infections such that after a lag of 4-8 hours, most cell host responses were similar for both viruses, while divergent host cell responses appeared after 24-48 hours. The similarities and differences in gene expression after epithelial infection of rhinovirus, influenza virus, or both viruses together revealed qualitative and quantitative differences in innate immune activation and regulation. These differences help explain the generally mild outcome of rhinovirus infections compared to influenza infections which can be much more severe. Human bronchial epithelial cells (BEAS-2B) were infected with rhinovirus, influenza virus or both viruses and RNAs were then profiled at 10 time points (2, 4, 6, 8, 12, 24, 26, 48, 60 and 72hrs)
Project description:Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Despite modest advances in the diagnosis and treatment of infections by these viruses, novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. From these data, we constructed a transcriptional regulatory network model that revealed shared and unique host responses to these viral infections such that after a lag of 4-8 hours, most cell host responses were similar for both viruses, while divergent host cell responses appeared after 24-48 hours. The similarities and differences in gene expression after epithelial infection of rhinovirus, influenza virus, or both viruses together revealed qualitative and quantitative differences in innate immune activation and regulation. These differences help explain the generally mild outcome of rhinovirus infections compared to influenza infections which can be much more severe.