Project description:Chinese wheat mosaic virus (CWMV) is a severe threat to winter wheat, but the mechanism of the viral pathogenic mechanism is poorly understood. In this study, a LC-MS/MS-based quantitative proteomics was conducted to analyze the proteomic changes of CWMV-infected Nicotiana benthamiana compared to mock plants. In total, 2,751 identified host proteins were identified, 1,496 of which were quantified. 146 up-regulated and 248 down-regulated proteins were characterized as differently accumulated proteins (DAPs)
2021-09-09 | PXD017593 | Pride
Project description:m6A seq of two wheat varieties infected by wheat yellow mosaic virus
Project description:Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are type members of Tritimovirus and Poacevirus genera, respectively, in the family Potyviridae, and are transmitted by wheat curl mites. Co-infection of these two viruses causes synergistic interaction with increased virus accumulation and disease severity in wheat. In this study, we examined the effects of synergistic interaction between WSMV and TriMV on endogenous small (s) RNAs and virus-specific small interfering RNAs (vsiRNAs) in susceptible (Arapahoe) and temperature-sensitive resistant (Mace) wheat cultivars at 27C and 18C. Single- and double-infections in wheat caused a shift in the profile of endogenous sRNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Additionally, we report high-resolution vsiRNA maps of WSMV and TriMV in singly- and doubly-infected wheat cultivars Arapahoe and Mace at 18C and 27C. Massive amounts of 21 and 22 nt vsiRNA reads were accumulated in Arapahoe at both temperatures and in Mace at 27C but not at 18C. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27C, although some regions of genomic RNAs serve as hot-spots with an excessive number of vsiRNAs. The positions of vsiRNA peaks were conserved among wheat cultivars Arapahoe and Mace, suggesting that Dicer-like enzymes of susceptible and resistant wheat cultivars are similarly accessed the genomic RNAs of WSMV and TriMV. Additionally, several cold-spot regions were found in the genomes of TriMV and WSMV with no or a few vsiRNAs, indicating that certain regions of WSMV and TriMV genomes are not accessible to Dicer-like enzymes. The high-resolution map of endogenous and vsiRNAs from wheat cultivars synergistically infected with WSMV and TriMV at two temperature regimens form a foundation for understanding the virus-host interactions, effect of synergistic interactions on host defense mechanisms, and virus resistance mechanisms in wheat. Small RNA was sequenced from two wheat cultivars (Mace and Araphahoe), at two temperatures 18C and 27C, for healthy (control/uninfected), infected with wheat streak mosaic virus (WSMV), infected with Triticum mosaic virus (TriMV), and a double-infecttion of WSMV and TriMV.
Project description:Posttranscriptional and posttranslational modifications play crucial roles in plant immunity. However, how plant fine-tune these two modifications to activate antiviral immunity remains unknown. Here, we report that the m6A methyltransferase TaHAKAI is utilized by wheat yellow mosaic virus (WYMV) to increase viral genomic m6A modification and promotes viral replication. However, TaHAKAI also functions as an E3 ligase that targets the viral RNA silencing suppressor P2 for degradation and inhibits viral infection. A major allele of TaHAKAI in susceptible cultivar reduced the E3 ligase activity but not m6A methyltransferase activity, promoting viral infection. Interestingly, TaHAKAIR attenuates the mRNA stability of TaWPS1, the negative regulator of spike development, to increase panicle length and spikelet number by modulating its m6A modification. Our study reveals a new mechanisms of balancing disease resistance and yield by fine-tuning m6A modification and ubiquitination.
Project description:Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are type members of Tritimovirus and Poacevirus genera, respectively, in the family Potyviridae, and are transmitted by wheat curl mites. Co-infection of these two viruses causes synergistic interaction with increased virus accumulation and disease severity in wheat. In this study, we examined the effects of synergistic interaction between WSMV and TriMV on endogenous small (s) RNAs and virus-specific small interfering RNAs (vsiRNAs) in susceptible (Arapahoe) and temperature-sensitive resistant (Mace) wheat cultivars at 27ºC and 18ºC. Single- and double-infections in wheat caused a shift in the profile of endogenous sRNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Additionally, we report high-resolution vsiRNA maps of WSMV and TriMV in singly- and doubly-infected wheat cultivars Arapahoe and Mace at 18ºC and 27ºC. Massive amounts of 21 and 22 nt vsiRNA reads were accumulated in Arapahoe at both temperatures and in Mace at 27ºC but not at 18ºC. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27ºC, although some regions of genomic RNAs serve as hot-spots with an excessive number of vsiRNAs. The positions of vsiRNA peaks were conserved among wheat cultivars Arapahoe and Mace, suggesting that Dicer-like enzymes of susceptible and resistant wheat cultivars are similarly accessed the genomic RNAs of WSMV and TriMV. Additionally, several cold-spot regions were found in the genomes of TriMV and WSMV with no or a few vsiRNAs, indicating that certain regions of WSMV and TriMV genomes are not accessible to Dicer-like enzymes. The high-resolution map of endogenous and vsiRNAs from wheat cultivars synergistically infected with WSMV and TriMV at two temperature regimens form a foundation for understanding the virus-host interactions, effect of synergistic interactions on host defense mechanisms, and virus resistance mechanisms in wheat.
Project description:Gene expression analysis of chrysanthemum infected with three different viruses including Cucumber mosaic virus, Tomato spotted wilt virus, and Potato virus X have been performed using the chrysanthemum 135K microarray.