Project description:Several environmental bacteria encode plastic-degrading enzymes, a potential evolutionary response to the rapid introduction of plastic across global ecosystems. Given the widespread use of plastic in healthcare, we hypothesised that clinical bacterial isolates may also degrade plastic, rendering plastic-containing medical devices susceptible to degradation and failure and potentially offering these pathogens a carbon source that could be used to persist in the hospital-built environment. Here, we mined the genomes of prevalent pathogens and identified several enzymes in different pathogens with homology to known plastic-degrading enzymes. Synthesising and expressing a potential plastic-degrading enzyme derived from a Pseudomonas aeruginosa wound isolate in a heterologous host, we were able to demonstrate potent plastic degrading activity. We subsequently found that the original P. aeruginosa clinical isolate could reduce the weight of a medically relevant plastic, polycaprolactone (PCL), by 78% in 7 days, and critically could use it as a sole carbon source to grow. We uncovered a direct link to virulence, demonstrating that encoding a plastic degrading enzyme can significantly enhance biofilm formation and pathogenicity in vivo. We also demonstrate that this augmented biofilm phenotype is conserved in another P. aeruginosa PCL-degrading clinical isolate we identified in a screening. We reveal that the mechanism underpinning this enhanced biofilm formation is the incorporation of the plastic breakdown products into the extracellular matrix, leading to enhanced biofilm levels. The level of PCL degradation we show by a clinical isolate and its ability to promote a key virulence and persistence determinant such as biofilm formation indicates that the integrity of any PCL containing medical device, such as sutures or implants, and the condition of patients receiving such devices could be severely compromised by pathogens with this capacity. Given the central role of plastic in healthcare, this should be considered in the future of medical interventions and practice and hospital designs implementing this material
2025-10-14 | GSE275972 | GEO
Project description:Industrial WWTP sludge as a source of potential plastic-degrading enzymes
Project description:Vibrio species represent one of the most diverse genera of marine bacteria known for their ubiquitous presence in natural aquatic systems. Several members of this genus including Vibrio harveyi are receiving increasing attention lately because they are becoming a source of health problems, especially for some marine organisms widely used in sea food industry. To learn about adaptation changes triggered by V. harveyi during its long-term persistence at elevated temperatures, we studied adaptation of this marine bacterium in sea water microcosms at 30 oC that closely mimicks the upper limits of sea surface temperatures recorded around the globe.
Project description:Previous studies have demonstrated that the iron content in marine heterotrophic bacteria is comparatively higher than that of phytoplankton. Therefore, they have been indicated to play a major role in the biogeochemical cycling of iron. In this study, we aimed to investigate the potential of viral lysis as a source of iron for marine heterotrophic bacteria. Viral lysates were derived from the marine heterotrophic bacterium, Vibrio natriegens PWH3a (A.K.A Vibrio alginolyticus). The bioavailability of Fe in the lysates was determined using a model heterotrophic bacterium, namely, Dokdonia sp. strain Dokd-P16, isolated from Fe-limited waters along Line P transect in the Northeastern Pacific Ocean. The bacteria were grown under Fe-deplete or Fe-replete conditions before being exposed to the viral lysate. Differential gene expression following exposure to the viral lysate was analyzed via RNA sequencing to identify differentially expressed genes under iron-replete and iron-deplete conditions. This study would provide novel insights into the role of viral lysis in heterotrophic bacteria in supplying bioavailable iron to other marine microorganisms under iron-limiting and non-limiting conditions. First, the marine heterotrophic bacterium genome, Dokdonia sp. strain Dokd-P16, was sequenced to provide a genomic context for the expression studies. Subsequently, the relative gene expression in Dokdonia sp. strain Dokd-P16 grown under Fe limiting and non-limiting conditions were analyzed. This transcriptomic approach would be utilized to elucidate genes regulated by Fe availability in Dokdonia sp. strain Dokd-P16, which indicate its Fe-related response viral lysate exposure. Taken together, in this study, the transcriptomic responses of Fe-limited and non-limited marine heterotrophic bacteria were analyzed, which provided novel insights into the biological availability of Fe from the viral lysates.
Project description:Hypocrea jecorina (anamorph Trichoderma reesei) is one of the most well studied fungi used in biotechnology industry. This fungus is today a paradigm for the comercial scale production of different plant cell wall degrading enzymes, mainly cellulases and hemicellulases. The objective of this study was to analyze the transcriptional profiling of T. reesei grown in presence of cellulose, sophorose and glucose as the carbon source using RNA-seq approach.