Project description:Transcriptional profiling of 25d old piglets comparing control untreated suckling jejunum with weaned piglets' jejunum. The goal was to gain new insight into the interaction between weaning and intestinal function.A keen interest is paid in deciphering expression changes of apoptosis or cell cycle control genes. The statistical analysis of gene ontology revealed that most of these altered genes are metabolic-related enzymes and regulators which may involved in the biological regulation, developmental process, and cellular process. Weaning also causes alterations in various immune response pathways. Results likely indicate that weaning induced cell cycle arrest, enhanced apoptosis, and inhibited cell proliferation. Two-condition experiment, suckling control piglets' jejunum vs. weaned piglets' jejunum. Biological replicates: 4 control replicates, 4 weaned replicates.
Project description:Transcriptional profiling of 25d old piglets comparing control untreated suckling jejunum with weaned piglets' jejunum. The goal was to gain new insight into the interaction between weaning and intestinal function.A keen interest is paid in deciphering expression changes of apoptosis or cell cycle control genes. The statistical analysis of gene ontology revealed that most of these altered genes are metabolic-related enzymes and regulators which may involved in the biological regulation, developmental process, and cellular process. Weaning also causes alterations in various immune response pathways. Results likely indicate that weaning induced cell cycle arrest, enhanced apoptosis, and inhibited cell proliferation.
Project description:Early-weaning-induced stress causes diarrhea, thereby reduces growth performance of piglets. Gut bacterial dysbiosis emerges as a leading cause of post-weaning diarrhea. The present study was aimed to investigate the effect of capsulized fecal microbiota transportation (FMT) on gut bacterial community, immune response and gut barrier function of weaned piglets. Thirty-two were randomly divided into two groups fed with basal diet for 21 days. Recipient group was inoculated orally with capsulized fecal microbiota of health Tibetan pig daily morning during whole period of trial, while control group was given orally empty capsule. The results showed that the F/G ratio, diarrhea ratio, diarrhea index, and histological damage score of recipient piglets were significantly decreased. FMT treatment also significantly increased the colon length of piglets. Furthermore, the relative abundances of Firmicutes, Euryarchaeota, Tenericutes, Lactobacillus, Methanobrevibacter and Sarcina in colon of recipient piglets were increased, and the relative abundances of Campylobacter, Proteobacteria, and Melainabacteria were significantly decreased compared with control group.
Project description:To investigate the effect of short distance transport on jejunal tissueof weaned piglets, We then performed gene expression profiling analysis using data obtained from RNA-seq in jejunal tissues of weaned piglets after transport and without transport
Project description:Seaweeds, including the green Ulva lactuca, can potentially reduce competition between feed, food, and fuel. They can also contribute to the improved development of weaned piglets. However, their indigestible polysaccharides of the cell wall pose a challenge. This can be addressed through carbohydrase supplementation, such as the recombinant ulvan lyase. The objective of our study was to assess the muscle metabolism of weaned piglets fed with 7% U. lactuca and 0.01% ulvan lyase supplementation, using an integrated transcriptomics (RNA-seq) and proteomics (LC-MS) approach.