Project description:To elucidate the modulatory participation of miRNAs in mollusk biomineralization, we have employed high-throughput sequencing to identify miRNAs of pearl oyster, Pinctada fucata. Our study focused on the miRNA expression profile of the mantle, an organ responsible for shell formation of the oyster. The pearl oysters were cultured in the tank with the maintaining conditions of temperature 19 ℃, PH 8.1 and salinity 33‰ in recirculating seawater.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:We applied metagenomic shotgun sequencing to investigate the effects of ZEA exposure on the change of mouse gut microbiota composition and function.
2019-11-09 | GSE140149 | GEO
Project description:Metagenomic shotgun sequencing of water samples
Project description:To study hepatic gene expression differences, liver samples from infected pigs (n = 10) were compared with liver samples from the non-infected control group (n = 5). Ten microarrays were performed, such that 5 randomly selected cDNA samples from the infected group were labeled with Oyster 550 (Genisphere Inc., Hatfield, PA, USA) and compared directly to 5 control animals labeled with Oyster 650 (Genisphere) analysing a pair of samples (one from an infected animal and one from a randomly chosen non-infected animal) on each microarray slide. The remaining five cDNA preparations from the infected group were labeled with Oyster 650 and compared in the same way to the five controls labeled with Oyster 550 on the remaining 5 microarray slides. This dye-swap design was applied to reduce variation due to dye effects and to provide as much biological replication as possible. Keywords: Disease state analysis