Project description:The present study was conducted to evaluate the effects of the intake of three types of coffee (caffeinated, decaffeinated, and green unroasted coffee) on the livers of C57BL/6J mice fed a high-fat diet, and to extensively elucidate the physiological responses to coffee intake by analysing the findings obtained from a comprehensive transcriptomic analysis using DNA microarrays. The present study was conducted to evaluate the effects of the intake of three types of coffee (caffeinated, decaffeinated, and green unroasted coffee) on the livers of C57BL/6J mice fed a high-fat diet, and to extensively elucidate the physiological responses to coffee intake by analysing the findings obtained from a comprehensive transcriptomic analysis using DNA microarrays.
Project description:Coffee leaf miner is an important plague in coffee crops. Using subtracted cDNA libraries and nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of coffee plants from an hybrid progeny (C. arabica x C. racemosa), containg resistant (R) and susceptible plants (S) to the infestation of coffee leaf miner. Leaf discs were collected from non-infested plants (R control - RC; S control - SC), infested plants after moth oviposition (R oviposition - Ro; S oviposition - So) and infested after larvar eclosion (R eclosion - Re; S eclosion - Se). Isolation and characterization of Coffea genes induced during coffee leaf miner (Leucoptera coffeella) infestation. Plant Science 169(2):351-360 Keywords: ordered
2005-08-15 | GSE2045 | GEO
Project description:DNA sequence of mixed culture : co-digestion of food waste and spent coffee grounds
Project description:The present study was conducted to evaluate the effects of the intake of three types of coffee (caffeinated, decaffeinated, and green unroasted coffee) on the livers of C57BL/6J mice fed a high-fat diet, and to extensively elucidate the physiological responses to coffee intake by analysing the findings obtained from a comprehensive transcriptomic analysis using DNA microarrays. The present study was conducted to evaluate the effects of the intake of three types of coffee (caffeinated, decaffeinated, and green unroasted coffee) on the livers of C57BL/6J mice fed a high-fat diet, and to extensively elucidate the physiological responses to coffee intake by analysing the findings obtained from a comprehensive transcriptomic analysis using DNA microarrays. Briefly, 7-week-old male C57BL/6J mice purchased from Charles River Laboratories Japan (Yokohama) were divided into the following five groups. The normal diet group (ND group) was fed D12450B (10 kcal% fat, Research Diets, New Brunswick, NJ, USA). The high-fat diet group (HF group) was fed D12492 (60 kcal% fat, Research Diets, New Brunswick, NJ, USA). The caffeinated coffee group (HFCC group) was fed a high-fat diet containing 2% caffeinated freeze-dried coffee. The decaffeinated coffee group (HFDC group) was fed a high-fat diet containing 2% decaffeinated freeze-dried coffee. The green unroasted coffee group (HFGC group) was fed a high-fat diet containing 2% unroasted caffeinated freeze-dried coffee. The mice had ad libitum access to their diets and drinking water. After 9 weeks, mice were sacrificed and the livers were subjected to the Affymrtix DNA microarray experiment.
Project description:Coffee leaf miner is an important plague in coffee crops. Using subtracted cDNA libraries and nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of coffee plants from an hybrid progeny (C. arabica x C. racemosa), containg resistant (R) and susceptible plants (S) to the infestation of coffee leaf miner. Leaf discs were collected from non-infested plants (R control - RC; S control - SC), infested plants after moth oviposition (R oviposition - Ro; S oviposition - So) and infested after larvar eclosion (R eclosion - Re; S eclosion - Se). Isolation and characterization of Coffea genes induced during coffee leaf miner (Leucoptera coffeella) infestation. Plant Science 169(2):351-360
Project description:The long-term viability of Pacific salmon stocks and the fisheries they support are threatened if large numbers die prematurely en-route to spawning grounds. Physiological profiles that were correlated with the fate of wild sockeye salmon during river migration were discovered using functional genomics studies on biopsied tissues. Three independent biotelemetry studies tracked the biopsied fish after tagging in the marine environment over 200 km from the Fraser River, in the lower river 69 km from the river mouth and at the spawning grounds. Salmon carrying the poor performance (unhealthy) profile in the ocean exhibited a 4-times lower probability of arriving to spawning grounds than those with a healthy genomic signature, although generally migrated into the river and to the spawning grounds faster. A related unhealthy signature observed in the river was associated with a 30% reduction in survival to spawning grounds in one of the three stocks tested. At spawning grounds, the same poor performance signature was associated with twice the pre-spawning mortality compared with healthy fish. Functional analysis revealed that the unhealthy signature, which intensified during migration to spawning grounds, was consistent with an intracellular pathogenic infection, likely a virus. These results are the first to suggest a pathogen present in salmon in the marine environment could be a major source of mortality during migration and spawning in the river. This series is of gill expression profiles from the study of fish sampled and tagged in the ocean and tracked as they entered the river system and swam towards the spawning grounds.