Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Distinctions between craniofacial and axial muscles exist from the onset of development and throughout adulthood. The masticatory muscles are a specialized group of craniofacial muscles that retain embryonic fiber properties throughout adulthood, suggesting that the developmental origin of these muscles may govern a pattern of expression that differs from limb muscles. To determine the extent of these differences, expression profiling of total RNA isolated from the masseter and tibialis anterior (TA) muscles of adult female mice was performed, which identified transcriptional changes in unanticipated functional classes of genes in addition to those associated with fiber type. In particular, the masseters displayed a reduction of transcripts associated with load-sensing and anabolic processes, and heightened expression of genes associated with stress. Consistent with these observations were a significantly smaller fiber cross-sectional area in masseters, significantly elevated load-sensing signaling (phosphorylated Focal Adhesion Kinase (FAK)), and increased apoptotic index in masseters compared to TA muscles. Based on these results, we hypothesize that masticatory muscles may sense and respond to load differently than limb muscles, where the drive for anabolic processes is reduced, and cell stress mediated processes are enhanced. These results establish a novel classification for the masseter muscle in the spectrum of skeletal muscle allotypes, and may provide insight into the molecular basis for specific muscle-related pathologies associated with masticatory muscles. Keywords: skeletal muscle, developmental origin, craniofacial muscles
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Distinctions between craniofacial and axial muscles exist from the onset of development and throughout adulthood. The masticatory muscles are a specialized group of craniofacial muscles that retain embryonic fiber properties throughout adulthood, suggesting that the developmental origin of these muscles may govern a pattern of expression that differs from limb muscles. To determine the extent of these differences, expression profiling of total RNA isolated from the masseter and tibialis anterior (TA) muscles of adult female mice was performed, which identified transcriptional changes in unanticipated functional classes of genes in addition to those associated with fiber type. In particular, the masseters displayed a reduction of transcripts associated with load-sensing and anabolic processes, and heightened expression of genes associated with stress. Consistent with these observations were a significantly smaller fiber cross-sectional area in masseters, significantly elevated load-sensing signaling (phosphorylated Focal Adhesion Kinase (FAK)), and increased apoptotic index in masseters compared to TA muscles. Based on these results, we hypothesize that masticatory muscles may sense and respond to load differently than limb muscles, where the drive for anabolic processes is reduced, and cell stress mediated processes are enhanced. These results establish a novel classification for the masseter muscle in the spectrum of skeletal muscle allotypes, and may provide insight into the molecular basis for specific muscle-related pathologies associated with masticatory muscles. Experiment Overall Design: Tissues were isolated from normal adult female mice (C57Bl/6), age 6 months. Paired comparisons between masseter and tibialis anterior muscles were performed on all present genes using "Significance Analysis of Microarrays" (SAM) to identify differentially expressed genes between masticatory and axial muscles.
Project description:Background: The aim of this study is to improve our understanding of the mechanisms underlying the sparing of masticatory muscles relative to limb muscles in ICU patients with acute quadriplegic myopathy (AQM) by using a unique porcine ICU model, i.e., 5-day longitudinal experiments where animals are sedated, mechanically ventilated and exposed to factors triggering AQM, such as muscle unloading, endotoxin-induced sepsis, and systemic exposure to CS and NMBA. Results: An altered expression was notably observed in heat-shock proteins genes, sarcomeric proteins and myostatin genes were noticed. Hence, modifications in heat-shock proteins, sarcomeric proteins and myostatin genes are in sharp contrast to alterations in the limb muscles and it is postulated that elevated heat-shock proteins and decreased sarcomeric protein and myostatin genes play a protective role in the masticatory muscle relative to limb muscle in ICU patients with AQM. Conclusions: This intervention had no significant effect on masseter muscle fiber size or force-generation capacity. This is in sharp contrast to the dramatic decrease observed in specific force in limb muscle fibers from the same animals. However, significant differences were observed between the craniofacial and the limb muscle with a masseter muscle specific regulation of i) transcriptional and growth factors like RUNX1, FOXO1A, TBX1, PGC1-β and myostatin, ii) several heat shock protein genes like HSP 90, HSP 105/110 and αB-crystallin, iii) a matrix metalloproteinase inhibitor (TIMP2) and iv) oxidative stress responsive elements such as SRXN1 and SOD2. These muscle-type specific differences, the alterations in heat shock protein, sarcomeric protein and myostatin genes are forwarded as important factors underlying the sparing of masticatory muscles compared with limb muscles in critically ill ICU patients with Acute Quadriplegic Myopathy. Keywords: Treatment, immobilization, muscle function.
Project description:Skeletal muscle unloading due to joint immobilization induces skeletal muscle atrophy. However, the skeletal muscle proteome response to limb immobilization has not been investigated using SWATH methods. This study quantitatively characterized the muscle proteome at baseline, and after 3 and 14 d of unilateral lower limb (knee-brace) immobilization in 18 healthy young men (25.4 ±5.5 y, 81.2 ±11.6 kg). All muscle biopsies were obtained from the vastus lateralis muscle. Unilateral lower limb immobilization was preceded by four-weeks of exercise training to standardise acute training history, and 7 days of dietary provision to standardise energy/macronutrient intake. Dietary intake was also standardised/provided throughout the 14 d immobilization period.