Project description:The lungs are a frequent target of metastatic breast cancer cells, but the underlying molecular mechanisms are unclear. All existing data were obtained either using statistical association between gene expression measurements found in primary tumors and clinical outcome, or using experimentally derived signatures from mouse tumor models. Here, we describe a distinct approach that consists to utilize tissue surgically resected from lung metastatic lesions and compare their gene expression profiles with those from non-pulmonary sites, all coming from breast cancer patients. We demonstrate that the gene expression profiles of organ-specific metastatic lesions can be used to predict lung metastasis in breast cancer. We identified a set of 21 lung metastasis-associated genes. Using a cohort of 72 lymph node-negative breast cancer patients, we developed a six-gene prognostic classifier that discriminated breast primary cancers with a significantly higher risk of lung metastasis. We then validated the predictive ability of the six-gene signature in 3 independent cohorts of breast cancers consisting of a total of 721 patients. Finally, we demonstrated that the signature improves risk stratification independently of known standard clinical parameters and a previously established lung metastasis signature based on an experimental breast cancer metastasis model. Experiment Overall Design: We used microarrays to identify lung metastasis-related genes in a series of 23 patients with breast cancer metastases. No replicate, no reference sample.
Project description:The lungs are a frequent target of metastatic breast cancer cells, but the underlying molecular mechanisms are unclear. All existing data were obtained either using statistical association between gene expression measurements found in primary tumors and clinical outcome, or using experimentally derived signatures from mouse tumor models. Here, we describe a distinct approach that consists to utilize tissue surgically resected from lung metastatic lesions and compare their gene expression profiles with those from non-pulmonary sites, all coming from breast cancer patients. We demonstrate that the gene expression profiles of organ-specific metastatic lesions can be used to predict lung metastasis in breast cancer. We identified a set of 21 lung metastasis-associated genes. Using a cohort of 72 lymph node-negative breast cancer patients, we developed a six-gene prognostic classifier that discriminated breast primary cancers with a significantly higher risk of lung metastasis. We then validated the predictive ability of the six-gene signature in 3 independent cohorts of breast cancers consisting of a total of 721 patients. Finally, we demonstrated that the signature improves risk stratification independently of known standard clinical parameters and a previously established lung metastasis signature based on an experimental breast cancer metastasis model. Keywords: Disease state analysis
Project description:Breast cancers contain a minority population of cancer cells characterized by CD44 expression but low or undetectable levels of CD24 (CD44+CD24-/low) that have higher tumorigenic capacity than other subtypes of cancer cells. METHODS: We compared the gene-expression profile of CD44+CD24-/low tumorigenic breast-cancer cells with that of normal breast epithelium. Differentially expressed genes were used to generate a 186-gene invasiveness gene signature (IGS), which was evaluated for its association with overall survival and metastasis-free survival in patients with breast cancer or other types of cancer. RESULTS: There was a significant association between the IGS and both overall and metastasis-free survival (P<0.001, for both) in patients with breast cancer, which was independent of established clinical and pathological variables. When combined with the prognostic criteria of the National Institutes of Health, the IGS was used to stratify patients with high-risk early breast cancer into prognostic categories (good or poor); among patients with a good prognosis, the 10-year rate of metastasis-free survival was 81%, and among those with a poor prognosis, it was 57%. The IGS was also associated with the prognosis in medulloblastoma (P=0.004), lung cancer (P=0.03), and prostate cancer (P=0.01). The prognostic power of the IGS was increased when combined with the wound-response (WR) signature. CONCLUSIONS: The IGS is strongly associated with metastasis-free survival and overall survival for four different types of tumors. This genetic signature of tumorigenic breast-cancer cells was even more strongly associated with clinical outcomes when combined with the WR signature in breast cancer. Expression profling was performed on 6 tumorigenic, 3 non tumorigenic samples of breast tumors and 3 normal breast samples on two different platforms GPL96 and GPL97. A gene signature was derived by comparing the gene expressions of 6 tumorigenic samples with 3 normal breast samples.
Project description:We analysed the signature of the non-immune cells from the metastatic niche and the distal lung using the breast tumour 4T1 cell line as a model of lung metastasis from breast cancer