Project description:We aimed to compare CTCF binding patterns, chromatin states and 3D genome structure in the absence and after activation of Wnt signaling in HEK293T cells.
Project description:The eukaryotic genome is tightly packed inside the nucleus, where it is organized in 3D at different scales. This structure is driven and maintained by different chromatin states and by architectural factors that bind DNA, such as the multi-zinc finger protein CTCF. Zygotic genome structure is established de novo after fertilization, but the impact of such structure on genome function during the first stages of mammalian development is still unclear. Here, we show that deletion of the Ctcf gene in mouse embryos impairs the correct establishment of chromatin structure, but initial lineage decisions take place and embryos are viable until the late blastocyst stage. Furthermore, we observe that maternal CTCF is not necessary for development. Transcriptomic analyses of mutant embryos show that the changes in metabolic and protein homeostasis programs that occur during the progression from the morula to the blastocyst depend on CTCF. Yet, these changes in gene expression do not correlate with disruption of chromatin structure, but mainly with proximal binding of CTCF to the promoter region of genes downregulated in mutants. Our results show that CTCF regulates both 3D genome organization and transcription during mouse preimplantation development, but mostly as independent processes.
Project description:The eukaryotic genome is tightly packed inside the nucleus, where it is organized in 3D at different scales. This structure is driven and maintained by different chromatin states and by architectural factors that bind DNA, such as the multi-zinc finger protein CTCF. Zygotic genome structure is established de novo after fertilization, but the impact of such structure on genome function during the first stages of mammalian development is still unclear. Here, we show that deletion of the Ctcf gene in mouse embryos impairs the correct establishment of chromatin structure, but initial lineage decisions take place and embryos are viable until the late blastocyst stage. Furthermore, we observe that maternal CTCF is not necessary for development. Transcriptomic analyses of mutant embryos show that the changes in metabolic and protein homeostasis programs that occur during the progression from the morula to the blastocyst depend on CTCF. Yet, these changes in gene expression do not correlate with disruption of chromatin structure, but mainly with proximal binding of CTCF to the promoter region of genes downregulated in mutants. Our results show that CTCF regulates both 3D genome organization and transcription during mouse preimplantation development, but mostly as independent processes.
Project description:CCCTC-binding factor (CTCF) is an architectural protein involved in the three-dimensional organization of chromatin. In this study, we systematically assayed the 3D genomic contact profiles of hundreds of CTCF binding sites in multiple tissues with high-resolution 4C-seq. We find both developmentally stable and dynamic chromatin loops. As recently reported, our data also suggest that chromatin loops preferentially form between CTCF binding sites oriented in a convergent manner. To directly test this, we used CRISPR-Cas9 genome editing to delete core CTCF binding sites in three loci, including the CTCF site in the Sox2 super-enhancer. In all instances, CTCF and cohesin recruitment were lost, and chromatin loops with distal CTCF sites were disrupted or destabilized. Re-insertion of oppositely oriented CTCF recognition sequences restored CTCF and cohesin recruitment, but did not re-establish chromatin loops. We conclude that CTCF binding polarity plays a functional role in the formation of higher order chromatin structure. 4C-seq was performed on a large number of viewpoints in E14 embryonic stem cells, neural precursor cells and primary fetal liver cells
Project description:CTCF plays a critical role in maintaining the three-dimensional (3D) chromatin organization, which is important for gene regulation, as it allows distal regulatory elements to come into proximity with one another. However, the detailed mechanism responsible for establishing and maintaining the recruitment of CTCF remains elusive. Here, we use in situ Hi-C to show that the ATP-dependent chromatin remodeler, Chd4, regulates intra-chromatin looping by controlling chromatin accessibility to conceal aberrant CTCF-binding sites in mouse embryonic stem cells (mESCs). These aberrant CTCF-binding sites are embedded in B2 SINEs and are localized within the interior of chromatin loops. In the absence of Chd4, the aberrant CTCF-binding sites become accessible and improper CTCF recruitment occurs, resulting in disorganization of the 3D chromatin architecture and subsequent disruption of enhancer-promoter interactions and the transcription of the corresponding genes. These results indicate that Chd4 regulates adequate transcription of mESCs by securing the proper 3D chromatin organization.