Project description:Soybeans fermented by Bacillus subtilis BJ3-2 exhibits strong ammonia taste in medium temperature below 37℃ and prominent soy sauce-like aroma moderate temperatures above 45℃. The transcriptome sequencing of Bacillus subtilis BJ3-2 (incubating at 37°C and 45°C) has been completed, screening of differentially expressed genes (DEGs) through data analysis, and analyzing their metabolic pathways, laying a foundation for exploring the regulatory mechanism of soy sauce-like aroma formation.
Project description:Group A Streptococcus (GAS) is one of the world’s most successful pathogens, causing a multitude of common infections such as pharyngitis, cellulitis, and impetigo. It is also responsible for more severe diseases such as rheumatic fever, necrotizing fasciitis, and toxic shock syndrome. Group A Streptococcus produces a powerful peptide toxin known as streptolysin S (SLS). Although recent advances have begun to uncover the structure of SLS, many questions remain as to its route of synthesis, export and function. A fundamental yet unanswered question about SLS is the mechanism employed by GAS to resist the effects of its own toxin. To address this question, we developed a unique microarray-based approach aimed at identifying bacterial genes involved in SLS immunity. We measured changes in gene expression in a non-SLS producing GAS strain (∆SLS) after exposure to active SLS, as well as to an inactive SLS isoform. Initial exposure of a non-SLS producing GAS to the native SLS toxin resulted in significant upregulation of several gene candidates. Proteins encoded by these gene candidates were produced and tested for their ability to neutralize SLS toxin activity in vitro. The protein encoded by the gene Spy_0787 decreased the cytolytic activity of wt SLS by 50%. Bacterial immunity is still a relatively unknown and unexplained phenomena. Insights into how toxin-producing microorganisms achieve resistance against the effects of their own toxin could uncover important therapeutic targets to neutralize virulence factors such as SLS, as well as other related peptide toxins. The microarray technique described here can be leveraged to other microbial systems to understand how microorganisms in general react to antibacterial and cytotoxic compounds for which the mechanism of action is unknown.
2013-09-01 | GSE48775 | GEO
Project description:fermented Chinese horse bean-chili
Project description:Group A Streptococcus (GAS) is one of the world’s most successful pathogens, causing a multitude of common infections such as pharyngitis, cellulitis, and impetigo. It is also responsible for more severe diseases such as rheumatic fever, necrotizing fasciitis, and toxic shock syndrome. Group A Streptococcus produces a powerful peptide toxin known as streptolysin S (SLS). Although recent advances have begun to uncover the structure of SLS, many questions remain as to its route of synthesis, export and function. A fundamental yet unanswered question about SLS is the mechanism employed by GAS to resist the effects of its own toxin. To address this question, we developed a unique microarray-based approach aimed at identifying bacterial genes involved in SLS immunity. We measured changes in gene expression in a non-SLS producing GAS strain (∆SLS) after exposure to active SLS, as well as to an inactive SLS isoform. Initial exposure of a non-SLS producing GAS to the native SLS toxin resulted in significant upregulation of several gene candidates. Proteins encoded by these gene candidates were produced and tested for their ability to neutralize SLS toxin activity in vitro. The protein encoded by the gene Spy_0787 decreased the cytolytic activity of wt SLS by 50%. Bacterial immunity is still a relatively unknown and unexplained phenomena. Insights into how toxin-producing microorganisms achieve resistance against the effects of their own toxin could uncover important therapeutic targets to neutralize virulence factors such as SLS, as well as other related peptide toxins. The microarray technique described here can be leveraged to other microbial systems to understand how microorganisms in general react to antibacterial and cytotoxic compounds for which the mechanism of action is unknown. Supernatants containing wt and S39A forms of SLS secreted by GAS strains were collected from 50 ml of overnight cultures of each strain at 37 degrees C in Todd Hewett broth supplemented with 10 mg/ml of bovine serum albumin fraction V (Sigma chemicals) in order to stabilize the toxin. The supernatant was then isolated and subjected to filter sterilization. For SLS exposure conditions, bacterial pellets containing GAS ∆SagA mutants were incubated with 1. supernatants containing wtSLS; 2. supernatants containing SLS S39A isoform; or 3. sterile TH media with 10mg/ml of BSA. The bacteria pellets were quickly resuspended after which the bacterial pellets were recollected for RNA isolation. A total of three exposure timepoints were used: 0h (immediately after exposure to SLS-containing supernatants), 3h post-exposure, and 6h post-exposure. The pellets were frozen at -80C until used for RNA extraction. Total RNA extraction and purification from the bacterial pellets were performed using the RNeasy isolation kit per manufacturer's instructions (Qiagen). RNA samples were processed following standard Roche NimbleGen gene expression analysis protocols. Double-stranded cDNA was synthesized from 10 μg of total RNA using random hexamer primers with the SuperScript cDNA synthesis kit (Invitrogen). One μg of cDNA was labeled with Cy3-random nonamers (Roche NimbleGen) for microarray hybridization.
Project description:Populations of engineered metabolite-producing microorganisms are prone to evolutionary production declines during industrial-scale cultivations. In this study, we develop a synthetic product addiction system in E coli that addicts mevalonic acid production cells to mevalonic acid. Through experimentally simuluated long-term fermentation, we investigate how product-addicted organisms remain stable and avoid formation of genetic subpopulations of fit, non-producing cells.
Project description:The purpose of this study is to analyze the key enzyme systems of Fermented Food Microorganisms, and trace its beneficial functional microorganisms through key enzymes. The test sample was a traditonal fermented food. To improve the accuracy and credibility of protein Information, 12 test parallels were randomly selected for the following analysis.
Project description:Background: Biological conversion of the surplus of renewable electricity to CH4 could support energy storage and strengthen the power grid. Biological methanation (BM) is closely linked to the activity of biogas-producing bacterial community and methanogenic Archaea in particular. During reactor operations, the microbiome is often subject to various changes whereby the microorganisms are challenged to adapt to the new conditions. In this study, a hydrogenotrophic-adapted microbial community in a laboratory-scale BM fermenter was monitored for its pH, gas production, conversion yields and composition. To investigate the robustness of BM regarding power oscillations, the biogas microbiome was exposed to five H2 starvations patterns for several hours.
Project description:Background The set of all mRNA molecules present in a cell constitute the transcriptome. The transcriptome varies depending on cell type as well as in response to internal and external stimuli during development. Chili pepper is an economically and culturally important horticultural crop as well as a good model for the study of secondary metabolism during fruit development. Here we present a study of the changes that occur in the transcriptome of chili pepper fruit during development and ripening. Results RNA-Seq was used to obtain transcriptomes of whole Serrano-type chili pepper fruits (Capsicum annuum L.; 'Tampiqueno 74') collected at 10, 20, 40 and 60 days after anthesis (DAA). 15,550,468 Illumina MiSeq reads were assembled de novo into 34,066 chili genes. We classified the expression patterns of individual genes as well as genes grouped into Biological Process ontologies and Metabolic Pathway categories using statistical criteria. For the analyses of gene groups we added the weighted expression of individual genes. This method was effective in interpreting general patterns of expression changes and increased the statistical power of the analyses. Subsets of genes were expressed only at a single time point sampled (1,278, 1,596, 1,519 and 1,583 genes at 10, 20, 40 and 60 DAA, respectively). We also estimated the variation in diversity and specialization of the transcriptome during chili pepper development. Approximately 17% of genes exhibited a significant change of expression in at least one of the intervals sampled. In contrast, significant differences in approximately 63% of the Biological Processes and 80% of the Metabolic Pathways studied were detected in at least one interval. Confirming previous reports, genes related to capsaicinoid and ascorbic acid biosynthesis were significantly upregulated at 20 DAA while those related to carotenoid biosynthesis were highly expressed in the last period of fruit maturation (40-60 DAA). Our RNA-Seq data was validated by examining the expression of nine genes involved in carotenoid biosynthesis by qRT-PCR. Conclusions In general, more profound changes in the chili fruit transcriptome were observed in the intervals between 10 to 20 and 40 to 60 DAA. The last interval, between 40 to 60 DAA, included 49% of all significant changes detected, and was characterized predominantly by a global decrease in gene expression. This period signals the end of maturation and the beginning of senescence of chili pepper fruit. The transcriptome at 60 DAA was the most specialized and least diverse of the four states sampled.