Project description:To understand molecular events of gallbladder cells during nanoplastics exposure, we performed scRNA-seq on gallbladder using 10x Genomics Chromium platform
Project description:Gallbladder cancer is a rare but highly malignant cancer. We performed the transcriptional profile sequencing to figure out the potential mechanisms, which might significantly affect gallbladder cancer progression.
Project description:The complexity of transcriptome in human gallbladder has not been clarified quite clearly so far. Here we collect 20 pairs of gallbladder samples.High-throughput RNA sequecing data was generated for each sample.We characterize the linear and circular transcripts.
Project description:Nanoplastics are produced by breakdown of plastics in environmental contamination or commercial use for cosmetics or daily expenses. Emerging evidence indicate that ingested nanoplastics with a size smaller than 100 nm have the potential to reach the brain and induces neurotoxicity. However, the potential toxicity of nanoplastics on brain are limited because of difficulties in synthesize of nanoplastics. In present study, we synthesized the fluorescent polystyrene nanoplastics (PSNPs) and examined the toxicity of PSNPs in brain in vivo and in vitro analyses by comparison to IR-813 fluorophore. Synthesized PSNPs were characterized by fluorescence imaging system, scanning electron microscopy, and Fourier-transform infrared spectroscopy. PSNPs were detected in adult mice brain by oral ingestion. In addition, a series of behavioral analyses showed that oral ingestion of PSNPs induced memory impairments. Among brain cells, PSNPs were predominantly internalized in microglia, and uptake of PSNPs induced microglial activation. In addition, the conditioned medium derived from microglia exposed to PSNPs repressed hippocampal neuronal activity. Furthermore, transcriptome analysis showed that PSNPs changed gene expressions in microglia, elevation of neuroinflammation in contrast to suppression of neurotrophic factors. These results indicated that predominant uptake of PSNPs in microglia induced elevation of neuroninflammatory responses whereas suppression of neurotrophic factors that may contribute to the cognitive impairment. Our findings indicate the toxic mechanism and potential detrimental effect of nanoplastic in brain and suggest a potential risk of cognitive impairment by exposure to nanoplastics.
Project description:We determined the global microRNA expression profiles of primary human gallbladder cells and genetically reprogrammed human gallbladder cells and compared with pancreatic beta cells to ascertain the degree of cellular transdifferentatiation of insulin-producing human gallbladder cells to become beta-like cells. First, we cultured patient-derived gallbladder cells and then we transduced these with beta cell transcription factors to reprogram gallbladder cells to become beta-like cells. We used a pan-islet surface monoclonal antibody to enrich for insulin-producing reprogrammed human gallbladder cells using FACS.
Project description:We determined the global gene expression profiles of primary human gallbladder cells and genetically reprogrammed human gallbladder cells and compared with pancreatic beta cells to ascertain the degree of cellular transdifferentatiation of insulin-producing human gallbladder cells to become beta-like cells. First, we cultured patient-derived gallbladder cells and then we transduced these with beta cell transcription factors to reprogram gallbladder cells to become beta-like cells. We used a pan-islet surface monoclonal antibody to enrich for insulin-producing reprogrammed human gallbladder cells using FACS.
Project description:Nanoplastics, as an emerging persistent pollutant of global concern in recent years, have posed a potential threat to human health. However, there is little known about the adverse effects of nanoplastics on the female reproductive system. Here, polystyrene nanoplastics (PS-NPs) with a diameter of 50 nm were selected as representative nanosized plastic particles to investigate the potential effects of subchronic exposure on placenta development in mice.
Project description:Plastic particles in water environment can adsorb heavy metals, leading to combined toxicity to aquatic organisms. However, current conclusions are mostly obtained based on cell population-average responses. Heterogeneity effects among cell populations in aquatic organisms remain unclear. This study analyzed the heterogeneity effects of 200 μg/L 100 nm polystyrene nanoplastics (PS-NPs), 50 μg/L lead (Pb), and their combined exposures on zebrafish intestine cells by single-cell RNA sequencing.A total of 38640 cells in the zebrafish intestine was obtained and identified as seven cell populations, including enterocytes, macrophages, neutrophils, B cells, T cells, enteroendocrine cells, and goblet cells.Co-exposure of PS-NPs and Pb caused similar transcriptome profiles with PS-NPs exposure in macrophages, which changed immunological recognition processes. The Pb exposure influenced the macrophages by direct cytotoxicity. However, the Pb alone and combined exposures induced similar modes of action in the enterocytes, including the generation of oxidative stress and abnormal lipid metabolism.