Project description:To evaluate the roles of miRNA in porcine liver, dynamic profiles of microRNAome were investigated in swine breeds with different traits of commercial interest, we sampled liver tissues from a Chinese well-known elite native breed of Enshi black pig, a Large White pig, and a Chinese wild boar living within the same environment at the same day-old(90d).
Project description:The wide application of pig disease model has caused a surge of interest in the study of derivation of pig induced pluripotent cells (iPSCs). Here we performed genome-wide analysis of gene expression profiling by RNA-seq and small RNA-seq and DNA methylation profile by MeDIP-seq in pig iPSCs through comparison with somatic cells. We identified mRNA and microRNA transcripts that were specifically expressed in pig iPSCs. We then pursued comprehensive bioinformatics analyses, including functional annotation of the generated data within the context of biological pathways, to uncover novel biological functions associated with maintenance of pluripotency in pig. This result supports that pig iPS have transcript profiles linked to ribosome, chromatin remodeling, and genes involved in cell cycle that may be critical to maintain their pluripotency, plasticity, and stem cell function. Our analysis demonstrates the key role of RNA splicing in regulating the pluripotency phenotype of pig cells. Specifically, the data indicate distinctive expression patterns for SALL4 spliced variants in different pig cell types and highlight the necessity of defining the type of SALL4 when addressing the expression of this gene in pig cells. MeDIP-seq data revealed that the distribution patterns of methylation signals in pig iPS and somatic cells along the genome. We identify 25 novel porcine miRNA, including pluripotency-related miR-302/367cluster up-regulated in pig iPSCs. At last, we profile the dynamic gene expression signature of pluripotent genes in the preimplantation development embryo of pig. The resulting comprehensive data allowed us to compare various different subsets of pig pluripotent cell. This information provided by our analysis will ultimately advance the efforts at generating stable naive pluripotency in pig cells.
Project description:In this study, miRNA-seq technique was used to identify differentially expressed miRNAs (DE miRNAs) in cardiac muscle of the Tibetan pig (TP) and Yorkshire pig (YP), which were both raised in highland environments. We obtained 108 M clean reads and 372 unique miRNAs that included 210 known pre-miRNAs and 162 novel pre-miRNAs. In addition, 20 DE miRNAs, including 10 upregulated and 10 downregulated miRNAs, were identified by comparing TP and YP. Based on the expression abundance and differentiation between the two populations, we predicted their targets, and KEGG pathway analyses suggested that DE miRNAs between the Tibetan pigs and Yorkshire pigs are involved in hypoxia-related pathways, such as the MAPK, mTOR, and VEGF signaling pathways, cancer-related signaling pathways, etc. Five DE miRNAs were randomly selected to validate the veracity of miRNA-seq using real-time PCR. The results showed that the expression corresponds to the trend in miRNA-seq, hence the deep-sequencing methods were feasible and efficient. This study expanded the number of hypoxic-adaptation-related miRNAs in pig and indicated that the expression patterns of hypoxia-related miRNAs are significantly altered in the Tibetan pig. DE miRNAs may play important roles in hypoxic adaptation after migration to hypoxic environments. mRNA profiles of 6-month old Tibetan pig (TP) and Yorkshire pig (YP) were generated by deep sequencing, in duplicate, using Hiseq 2000.
Project description:In this study, miRNA-seq technique was used to identify differentially expressed miRNAs (DE miRNAs) in cardiac muscle of the Tibetan pig (TP) and Yorkshire pig (YP), which were both raised in highland environments. We obtained 108 M clean reads and 372 unique miRNAs that included 210 known pre-miRNAs and 162 novel pre-miRNAs. In addition, 20 DE miRNAs, including 10 upregulated and 10 downregulated miRNAs, were identified by comparing TP and YP. Based on the expression abundance and differentiation between the two populations, we predicted their targets, and KEGG pathway analyses suggested that DE miRNAs between the Tibetan pigs and Yorkshire pigs are involved in hypoxia-related pathways, such as the MAPK, mTOR, and VEGF signaling pathways, cancer-related signaling pathways, etc. Five DE miRNAs were randomly selected to validate the veracity of miRNA-seq using real-time PCR. The results showed that the expression corresponds to the trend in miRNA-seq, hence the deep-sequencing methods were feasible and efficient. This study expanded the number of hypoxic-adaptation-related miRNAs in pig and indicated that the expression patterns of hypoxia-related miRNAs are significantly altered in the Tibetan pig. DE miRNAs may play important roles in hypoxic adaptation after migration to hypoxic environments.
Project description:miRNA sequences (from miRNA-seq) from the tissues of longissimus dorsi muscle of two indigenous Chinese pig breeds (Diannan Small Ear pig [DSP] and Tibetan pig [TP]) and two introduced pig breeds (Landrace [LL] and Yorkshire [YY]) were examined using HiSeq 2000 to identify and compare the differential expression of functional genes related to muscle growth and lipid deposition. With miRNA-seq, we obtained 23.78 M reads and 320 positively expressed miRNAs from muscle tissues, including 271 known pig miRNAs and 49 novel miRNAs. In those 271 known miRNAs, 20 were higher and 10 lower expressed in DSP-TP than in LL-YY. The target genes of the 30 miRNAs were mainly participated in MAPK, GnRH, insulin and Calcium signaling pathway and others involved in cell development, growth and proliferation, etc. Combining the DEGs and the differentially expressed (DE) miRNAs, we drafted a network of 46 genes and 18 miRNAs for regulating muscle growth and a network of 15 genes and 16 miRNAs for regulating lipid deposition. We identified that CAV2, MYOZ2, FRZB, miR-29b, miR-122, miR-145-5p and miR-let-7c, etc, were key genes or miRNAs regulating muscle growth, and FASN, SCD, ADORA1, miR-4332, miR-182, miR-92b-3p, miR-let-7a and miR-let-7e, etc. were key genes or miRNAs regulating lipid deposition.
Project description:Erhualian (EHL) is one of the seven strains included in a Chinese indigenous pig breed called Taihu. EHL is famous for its early sexual maturity, large litter size, high adiposity, mild temper, good maternity and high tolerance to roughage and stress. To further investigate the role of miRNAs in different breed-specific metabolic characters, a comparison of miRNA expression profiles in liver of newborn Erhualian (EHL) and Large White (LW) piglets was carried out. Six LC sciences microarrays containing 236 miRNA procine probes based on miRBase Release 16.0 and 100 custom miRNA probes based on the solex deep sequencing results (li et al.,2010) were used. When compaired with LW piglets, 5 down-regulated and 8 up-regulated miRNAs were detected (fold change >1.2 and p value < 0.1) in the liver of EHL among the 236 miRbase probes. When considering the 100 custom miRNA probes, 2 down-regulated and 5 up-regulated miRNAs were observed. These results were further described in the unpublished paper Coordinated miRNA/mRNA expression profiles for understanding breed-specific metabolic characters of liver between Erhualian and Large White pigs.
Project description:RNA-seq of total RNA was produced to aid in re-annotation of genes in horse, mouse, opossum, macaque, rat and pig. The RNA-seq was isolated from brain, liver and/or muscle.