Project description:Today, nanoparticles are used in various commercial products. One of the most common nanoparticles is titanium dioxide (TiO2). It has a catalytic activity and UV absorption (λ<400 nm), and it generates reactive oxygen species (ROS). The catalytic activity of TiO2 nanoparticle is capable of killing a wide range of microorganisms. In the environment, nanoparticles form structures consisting of primary particles, and their aggregates and agglomerates. These compounds are defined NOAA (nano-objects, and their aggregates and agglomerates greater than 100 nm). The unique properties of TiO2 nanoparticles can be maintained in the environment, thus, the growing use of TiO2 nanoparticles is raising concerns about the environmental risks. The assessment of biological and ecological effects of TiO2-NOAA is necessary. In our previous study, we assessed the effect of TiO2-NOAA on microbes by using Saccharomyces cerevisiae and Escherichia coli. It was shown that TiO2-NOAA decomposed methylene blue under UV irradiation. It suggested that TiO2-NOAA generated ROS under UV irradiation. However, TiO2-NOAA did not show growth inhibition in minimal agar medium under UV irradiation. By adding TiO2-NOAA in medium, colony formation was observed with UV intensity that inactivates microbes. Moreover, TiO2-NOAA adsorbed microbes. These results suggested that the amount of ROS generated by TiO2-NOAA was not enough to inactivate microbes, and TiO2-NOAA might protect microbes from UV. In this study, we assessed the effect of TiO2-NOAA in more detail by using S. cerevisiae. We used DNA microarray analysis for qualitative assessment. Further, we carried out quantitative assessment by using Real Time RT-PCR method for characteristic genes in DNA microarray analysis. To compare yeast cells in various conditions, six kinds of treatment conditions were prepared (Condition 1. adsorbed fraction to TiO2-NOAA under UV, 2. non-adsorbed fraction to TiO2-NOAA under UV, 3. adsorbed fraction to TiO2-NOAA without UV, 4. non-adsorbed fraction to TiO2-NOAA without UV, 5. irradiated UV and 6. negative control). From the result of DNA microarray analysis, the most number of genes was altered in Condition 1, followed by Condition 3 and 5. The genes related to oxidative stress, and the genes related to synthesis of trehalose and glycogen were significantly up-regulated of yeast cells in Condition 1 and 5, and Condition 1 and 3, respectively. These results suggest that yeast cells suffer oxidative stress by TiO2-NOAA under UV, and they also suffer membrane damage by TiO2-NOAA itself, as a result, they reserve energy sources. From the result of Real Time RT-PCR, genes related to oxidative stress (GRE2, SOD2) were up-regulated in Condition 1 and 3, however, these expression levels in each condition were not significant. And genes related to synthesis of trehalose and glycogen (GSY1, TPS2) were up-regulated in Condition 1 and 3. These results suggest that oxidative stress is caused not by TiO2-NOAA but by UV. It is also suggested that yeast cells were damaged at their membranes by TiO2-NOAA, as a result, genes related to synthesis of trehalose and glycogen were up-regulated. Thus, we suggest that the effect of TiO2-NOAA on yeast cells under UV irradiation is greater due to TiO2-NOAA itself than due to ROS generated by TiO2-NOAA.
Project description:We performed RNAseq on subpopulations of mammary epithelial cells. We carried out sorting of a gradient of s-SHIP positive cells in the mammary gland (neg, low, and hi for s-SHIP eGFP). High sSHIP-eGFP populations denote a postulated stem cell population, while low and negative represent more differentiated cell types. s-SHIP eGFP hi to negative potentially represents a gradient from stem to more differentiated progeny, respectively, within the basal epithelial compartment. We FACS sorted 3 replicates for each cell type to represent s-SHIP-neg, s-SHIP-low, and s-SHIP-high.
Project description:The data set comprises individual array-based genome-wide gene expression data of 991 participants of the SHIP-TREND cohort generated using RNA prepared from whole blood. *** Due to privacy concerns, the SNP and phenotype data is not available with unrestricted access. Individuals wishing to obtain this data for research purposes may request access directly from the submitter (contact info below). *** Total RNA was prepared from whole-blood samples from 991 individuals belonging to the epidemiological SHIP-TREND cohort. Individual mRNA profiles were generated using the Illumina HumanHT-12 v3 Expression BeadChip.
Project description:Inositol 5-phosphatase SHIP is differentially expressed in Ikaros and Helios deficient cells. In the absense of Ikaros SHIP is upregulated where as in the absense of Helios it is downregulated. Ikaros binds to the promoter of the SHIP gene. Article provides insight into the mechanisms of action Ikaros employs to regulate BCR signaling.
Project description:INTRODUCTION: Gain-of-function mutations in INPP5D, which encodes for the SH2-domain-containing inositol phosphatase SHIP-1, have recently been linked to an increased risk of developing late-onset Alzheimer’s disease (LOAD). Yet, little is currently known in regards to how SHIP-1 affects neurobiology or neurodegenerative disease pathogenesis. METHODS: To bridge this knowledge gap, we generated 5xFAD Inpp5dfl/flCx3cr1Ert2Cre mice to investigate the function of microglial SHIP-1 signaling in response to amyloid beta (Aβ)-mediated pathology. RESULTS: In our studies, we found that SHIP-1 deletion in microglia leads to substantially enhanced recruitment of microglia to Aβ plaques, altered microglial gene expression, and marked improvements in neuronal health. Further, SHIP-1 loss enhanced microglial plaque containment and Aβ engulfment when compared to microglia from Cre-negative 5xFAD Inpp5dfl/fl littermate controls. DISCUSSION: These results define SHIP-1 as a pivotal regulator of microglial responses during Aβ-driven neurological disease.
Project description:This project presents field metaproteomics data from Trichodesmium colonies collected from the surface ocean. Most were collected from the tropical and subtropical Atlantic ocean, but there is also data from the long term Bermuda Atlantic Time Series and Hawaii Ocean Time Series. Trichodesmium is a globally important marine microbe and its growth and nitrogen fixation activity is limited by nutrient availability in the surface ocean. This dataset was generated to answer questions about limitations on Trichodesmium's growth and activity in the nature.
Project description:Inositol 5-phosphatase SHIP is differentially expressed in Ikaros and Helios deficient cells. In the absense of Ikaros SHIP is upregulated where as in the absense of Helios it is downregulated. Ikaros binds to the promoter of the SHIP gene. Article provides insight into the mechanisms of action Ikaros employs to regulate BCR signaling. Two replicates of Ikaros deficient and wild type DT40 avian B cells.
Project description:Analysis of microbial gene expression in response to physical and chemical gradients forming in the Columbia River, estuary, plume and coastal ocean was done in the context of the environmental data base. Gene expression was analyzed for 2,234 individual genes that were selected from fully sequenced genomes of 246 prokaryotic species (bacteria and archaea) as related to the nitrogen metabolism and carbon fixation. Seasonal molecular portraits of differential gene expression in prokaryotic communities during river-to-ocean transition were created using freshwater baseline samples (268, 270, 347, 002, 006, 207, 212). Total RNA was isolated from 64 filtered environmental water samples collected in the Columbia River coastal margin during 4 research cruises (14 from August, 2007; 17 from November, 2007; 18 from April, 2008; and 16 from June, 2008), and analyzed using microarray hybridization with the CombiMatrix 4X2K format. Microarray targets were prepared by reverse transcription of total RNA into fluorescently labeled cDNA. All samples were hybridized in duplicate, except samples 212 and 310 (hybridized in triplicate) and samples 336, 339, 50, 152, 157, and 199 (hybridized once). Sample location codes: number shows distance from the coast in km; CR, Columbia River transect in the plume and coastal ocean; NH, Newport Hydroline transect in the coastal ocean at Newport, Oregon; AST and HAM, Columbia River estuary locations near Astoria (river mile 7-9) and Hammond (river mile 5), respectively; TID, Columbia River estuary locations in the tidal basin (river mile 22-23); BA, river location at Beaver Army Dock (river mile 53) near Quincy, Oregon; UP, river location at mile 74.
Project description:In this study we characterize microbial community features on the surface of Indian Ocean. 11 samples were collected from Indian Ocean and subjected for quantitative metaproteomics analysis for taxonomic and functional analysis. Our results suggested that metabolic tuning at metaproteomics levels enabled microbial community to sustain stable when subjected to environmental perturbations in the oligotrophic ocean.