Project description:Smc/ScpAB promotes chromosome segregation in prokaryotes, presumably by compacting and resolving nascent sister chromosomes. The underlying mechanisms, however, are poorly understood. Here, we investigate the role of the Smc ATPase activity in the recruitment of Smc/ScpAB to the Bacillus subtilis chromosome. We demonstrate that targeting of Smc/ScpAB to ParB/parS loading sites is strictly dependent on engagement of Smc head domains and relies on an open organization of the Smc coiled coils. We find that dimerization of the Smc hinge domain stabilizes closed Smc rods and hinders head engagement as well as chromosomal targeting. Conversely, the ScpAB sub-complex promotes head engagement and Smc rod opening and thereby facilitates recruitment of Smc to parS sites. Upon ATP hydrolysis, Smc/ScpAB is released from loading sites and relocates within the chromosomeâpresumably through translocation along DNA double helices. Our findings define an intermediate state in the process of chromosome organization by Smc. ChIP-Seq experiments were performed on wild type and mutant cells of Bacillus subtilis 1A700.
Project description:Purpose: We use the ribosome profiling protocol to understand why EF4 confers resistance to tellurite and how tellurite affects ribosome. Methods: We used ribosome profiling and transcriptomic data to analyze mainly by plastid software. The ribosome were purified by sucrose gradient separation. Results: Using polysome profile and sequencing data, we found that tellurite disables the ribosome subunits to form a functional 70S ribosome and reduces the ribosome density after tellurite exposure. We also found that tellurite influences the ribosome reaching to stop codon. Tellurite shortened the ribosome protected fragment, this process was mediated by EF4. EF4 mediated more gene expression including these known tellurite resistance genes to confer tellurite resistance. Tellurite also induced many differential gene expression. Conclusions: Tellurite exerts its toxicity on ribosome by disabling 70S ribosome formation, reaching to stop codon, and inducing differential gene expression.
Project description:We used here a combination of lineage tracing, FACS and genome-wide RNAseq to identify two key changes that accompany hinge-to-pouch fate change: (1) repression of hinge determinants and (2) upregulation of ribosome biogenesis.
Project description:The Escherichia coli quorum-sensing regulator, SdiA, belongs to the LuxR family of transcriptional regulators and is responsible for detecting signals from other bacteria. Previously we found that SdiA is necessary for E. coli to control its biofilm formation with indole just as SdiA is necessary for E. coli to alter its biofilm formation in the presence of N-acylhomoserine lactones (AHLs). Here we engineered SdiA by random mutagenesis to further control biofilm formation in the presence of indole and AHLs. After screening of 477?? mutants with indole and two AHLs (N-butyryl-DL-homoserine lactone, and N-(3-oxooctanoyl)-L-homoserine lactone, C6HSL), five SdiA variants were obtained that altered biofilm with and without signals of indole and AHLs. Two truncation variants (1E11 and 14C3) lacking the C-terminal DNA-binding domain of SdiA showed the reduction of biofilm formation by 5-fold and 10-fold in LB and LB glu, respectively. DNA microarrays show that the evolved SdiA (1E11) compared to wild-type SdiA influences indole synthesis genes, AI-2 uptake genes, acid-resistance genes, motility related genes, cold-shock protein genes, and several regulatory protein genes. Corroborating DNA microarrays, SdiA variants produced various amounts of indole which led to different survivals in low pH and influenced swimming motility and final cell density. Also, an AHL sensitive variant (2D10) 2-fold increased biofilm formation in the presence of C6HSL, while another variant (6B12) lowered biofilm formation in the presence of C6HSL. Hence, the results clearly showed that mutation of SdiA itself directly controls biofilm formation and SdiA variants could be further recognized by the inter-species signal AHLs. This is the first random protein engineering to control biofilm formation.
Project description:Smc/ScpAB promotes chromosome segregation in prokaryotes, presumably by compacting and resolving nascent sister chromosomes. The underlying mechanisms, however, are poorly understood. Here, we investigate the role of the Smc ATPase activity in the recruitment of Smc/ScpAB to the Bacillus subtilis chromosome. We demonstrate that targeting of Smc/ScpAB to ParB/parS loading sites is strictly dependent on engagement of Smc head domains and relies on an open organization of the Smc coiled coils. We find that dimerization of the Smc hinge domain stabilizes closed Smc rods and hinders head engagement as well as chromosomal targeting. Conversely, the ScpAB sub-complex promotes head engagement and Smc rod opening and thereby facilitates recruitment of Smc to parS sites. Upon ATP hydrolysis, Smc/ScpAB is released from loading sites and relocates within the chromosome—presumably through translocation along DNA double helices. Our findings define an intermediate state in the process of chromosome organization by Smc.
Project description:Avian Pathogenic Escherichia coli (APEC) are a group of extra-intestinal E. coli that infect poultry, and are able to cause a variety of diseases, systemic or localized, collectively designated as colibacillosis. Colibacillosis is the most common bacterial illness in poultry production, resulting in significant economic losses world-wide. Despite of its importance, pathogenicity mechanisms of APEC strains remain not completelly elucidated and available vaccines are not fully effectives. In order to better understand which genes could be related to pathogenicity in different APEC isolated, a microarray analyses of two APEC strains representing: Swollen Head Syndrome and Omphalitis was carried out.
Project description:We have deep sequenced the small transcriptome of Escherichia coli growing in LB and in MOPS, in exponential and stationary phase, and analyzed the resulting reads by a novel pipeline STARPA (Stable RNA Processing Product Analyzer). Our analysis reveals over 14,000 small transcripts enriched during both growth stages. RNA samples were collected from total RNA pools or from crude ribosome pools and then size selected by electrophoresis to limit the products to 20-300nt.
Project description:In order to understand the impact of genetic variants on transcription and ultimately in changes in observed phenotypes we have measured transcript levels in an Escherichia coli strains collection, for which genetic and phenotypic data has also been measured.
Project description:Although many clinically important antibiotics inhibit bacterial ribosomes, the mechanisms by which bacterial cells rescue ribosomes stalled by antibiotics remain poorly understood. Ribosome stalling leads to collisions that recruit ribosome quality control (RQC) factors that recycle the ribosome subunits and target nascent proteins for degradation. Surprisingly, loss of known RQC factors in E. coli does not lead to significant antibiotic sensitivity, even though antibiotics stall ribosomes and induce collisions, suggesting the existence of additional, uncharacterized RQC mechanisms. Here we report a novel mechanism for ribosome quality control (RQC) in bacteria in which the DExH-box ATPase HrpA splits stalled ribosomes into subunits. HrpA selectively acts on collided ribosomes and its activity is dependent on ATP hydrolysis. The cryo-EM structure of HrpA bound to collided ribosomes reveals insight into its selectivity and mechanism: the C-terminal domain of HrpA senses the collision and its helicase domain bind mRNA downstream of the ribosomes, where it likely exerts a pulling force that destabilizes the stalled ribosome. These studies highlight the importance of ribosome splitting as a highly conserved RQC mechanism across all three domains of life and identify an important pathway in proteobacteria that allows proteobacteria to tolerate ribosome-targeting antibiotics.