Project description:In this work, we used a functional gene microarray approach (GeoChip) to assess the soil microbial community functional potential related to the different wine quality. In order to minimize the soil variability, this work was conducted at a “within-vineyard” scale, comparing two similar soils (BRO11 and BRO12) previously identified with respect to pedological and hydrological properties within a single vineyard in Central Tuscany and that yielded highly contrasting wine quality upon cultivation of the same Sangiovese cultivar
Project description:Custom made functional gene micoarray (E-FGA) consisting of 13,056 mRNA-enriched anonymus microbial clones from dirverse microbial communities to profile microbial gene transcript in agricultural soils with low and high flux of N2O. A total of 96 genes displayed expression that differed significantly between low and high N2O emitting soils. Creation and validation of an cDNA microarray from environmental microbial mRNA, to use as a monitoring tool for microbial gene expression
Project description:Custom made functional gene micoarray (E-FGA) consisting of 13,056 mRNA-enriched anonymus microbial clones from dirverse microbial communities to profile microbial gene transcript in agricultural soils with low and high flux of N2O. A total of 96 genes displayed expression that differed significantly between low and high N2O emitting soils. Creation and validation of an cDNA microarray from environmental microbial mRNA, to use as a monitoring tool for microbial gene expression Microbial expression profiles comparing two high N2O-emitting sites (3 soil replicates and microarrays each) and two low N2O-emitting sites (3 soil replicates and microarray each) from sugarcane site in Mackay, Australia
Project description:Global warming has shifted climate zones poleward or upward. However, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate).Soils were characterized for geochemistry, Illumina sequencing was used to determine microbial taxonomic communities and GeoChips 5.0 were used to determine microbial functional genes.
Project description:We performed RNA-Seq based gene expression analysis of Arabidopsis Col-0 plants grown under axenic and holoxenic conditions in FlowPot system. Holoxenic plants were grown in the presence of soil slurries containing microbial communities derived from natural soils and under axenic condition in presence of heat-killed soil slurries for three weeks. We identified genes differentially enriched in response to presence of microbial communities. Our results suggested that in presence of microbiota there is a differential expression of immunity/defense-related genes in holoxenic compared to axenic plants.
Project description:The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation, with communities from surface ocean waters and agricultural soils significantly different from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in the agricultural soils and lowest in surface ocean waters.
Project description:Desert microbial communities live in a pulsed ecosystem shaped by isolated and rare precipitation events. The Namib desert is one of the oldest continuously hyperarid ecosystems on Earth. In this study, surface microbial communities of open soils (without sheltering features like rocks, vegetation or biological soil crusts) are analysed. We designed an artificial rainfall experiment where a 7x7 (3.5 x 3.5 m) plot remained dry while an adjacent one received a 30 mm simulated rain. Samples were taken randomly in parallel from both plots at 10 min, 1 h, 3 h, 7 h, 24 h and 7 days after the watering moment. Duplicate libraries were generated from total (rRNA depleted) RNA and sequenced 2x150 bp in an Illumina Hiseq 4000 instrument.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method. Triplicate samples were taken for both rhizosphere and bulk soil, in which each individual sample was a pool of four plants or soil cores. To determine the abundance of functional genes in the rhizosphere and bulk soils, GeoChip 3.0 was used.
Project description:Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Important functional genes, which characterize the rhizosphere microbial community, were identified to understand metabolic capabilities in the maize rhizosphere using GeoChip 3.0-based functional gene array method. Triplicate samples were taken for both rhizosphere and bulk soil, in which each individual sample was a pool of four plants or soil cores. To determine the abundance of functional genes in the rhizosphere and bulk soils, GeoChip 3.0 was used.